Showing posts with label bitcoin. Show all posts
Showing posts with label bitcoin. Show all posts

The Bitcoin malleability attack graphed hour by hour

I have a new Bitcoin article: Hidden surprises in the Bitcoin blockchain
The Bitcoin network was subject to a strange attack this week. Up to 25% of the recorded transactions were modified using a technique called transaction malleability. By examining the Bitcoin blockchain, I've created an hour-by-hour look at the attack.

For details on how transaction malleability works, see my article Bitcoin transaction malleability: looking at the bytes. As a quick summary, the attacker takes a new Bitcoin transaction, modifies it in a trivial way that changes the transaction hash, and sends it back into the Bitcoin system. The modified transaction functions exactly the same (transferring the bitcoins between the same addresses), but results in two slightly different versions of the transaction in the system. However, if client software or exchange software depends on the transaction hash, temporarily having two different hashes for the transaction can cause a variety of problems.

The reason malleability is possible is that inside a Bitcoin transaction is a tiny program that provides the signature data. This script pushes the (hex) 48 byte signature by using the instruction 48. An attacker can change the script to use the OP_PUSHDATA2 instruction (4d) followed by a two-byte length (48 00). The modified transaction is still valid, since the script has exactly the same action.

Tracking the malleability attack

I created the graph below, which shows the hourly progress of the attack: the blue line is the total number of Bitcoin transactions, and the green line is the number of transactions that were modified by the malleability attack.

Graph of Bitcoin transactions suffering from malleability attack, Feb 2014.

Graph of Bitcoin transactions suffering from malleability attack, Feb 2014.

The attack started off affecting a fairly small number of transactions on Feb 9. The malleability attack itself appears to have started in block 284980 (Feb 9, 8:12 PST), which contains 36 modified transactions. Since the number of affected transactions in this block and following blocks was small, I wonder if this was a test phase for the attack.

The attack really took off the morning of February 10. At the peak, up to 25% of Bitcoin transactions were modified.

The attack ended fairly abruptly the morning of Feb 11. I made a bunch of transactions that evening, hoping to see a modified one, but I was disappointed that they all went through untouched.

A few modified transactions continued to trickle in for the next few days, with some even today (Feb 14). Some of these are older transactions that were mined very slowly because they didn't include any fees. For example, this transaction was modified on Feb 10, but not mined until Feb 14.

History of OP_PUSHDATA2 usage

I wanted to find out if there were any precursors to the malleability attack, or any similar attacks earlier. I scanned the entire blockchain looking for transactions using the OP_PUSHDATA2 opcode, which is used in the malleability attack. (As an aside, the Bitcoin data is a pain to parse for several reasons.)

Up until the attack, OP_PUSHDATA2 was very rare. I saw OP_PUSHDATA2 used in July 2013 here for a strange - but not modified (malleated?) - transaction. OP_PUSHDATA2 was used again in November 5 (here)when someone used OP_PUSHDATA to include a joke signature in the transaction: I should not run the washing machine while listening to WZBC. I managed to convince myself that the machine was slowly failing -- that a rythmic, squeaking noise it had been making had gotten a little worse. Ten minutes later, though, the machine had paused. But the noise was still there. All that text is stored inside the Bitcoin transaction. There are a bunch of ways to "hide" text messages in the blockchain, and this transaction used an unusual one.

On Feb 4, this transaction used OP_PUSHDATA2 in a strange broken transaction that wasted 0.001 BTC. Interestingly, the sibling transaction wasted 0.03201 BTC in a broken MULTISIG transaction with the "correct horse battery staple" public key. I conclude that someone was trying out strange things on Feb 4, including the rare OP_PUSHDATA2 instruction. Was this debugging for the malleability attack a few days later or was this unrelated experimentation?

Some conclusions

There has been some speculation that the malleability attack directed the modified transactions to a specific miner. However, I looked at the blocks containing these transactions, and they come from a variety of well-known miners. So there's nothing miner-specific about this attack. The attackers don't have their own mining pool.

There's a 100-millisecond sleep in the Bitcoin peer's message processing loop. There has been speculation that the attacker could beat regular peers by avoiding this loop: regular peers would wait 100ms to pass along messages, while the attacker could get a transaction, modify it, and send it to a miner immediately. This seems plausible to me.

One puzzle is that Mt.Gox announced their difficulties on Feb 7, and then explained Feb 10 that they were stopping withdrawals due to a malleability attack. Since the OP_PUSHDATA2 attack didn't start until Feb 9, this attack can't be responsible for the Feb 7 problems. One possibility is there was a different type of malleability attack that affected Mt.Gox. It would be interesting to get the hash for one of the affected transactions from before Feb 7, to see what was going on.

Around the same time as the malleability attack, many people received tiny payments from 1Enjoy and 1Sochi addresses. I believe all these payments were rejected by miners as junk and remain unconfirmed. As far as I know, there is no connection between these tiny spam payments and the malleability attack, but the timing is suspicious.

Bitcoin transaction malleability: looking at the bytes

"Malleability" of Bitcoin transactions has recently become a major issue. This article looks at how transactions are modified, at the byte level.

I have a new article The malleability attack graphed hour-by-hour. Check it out too.

An attacker has been modifying Bitcoin transactions, causing them to have a different hash. Recently an attacker has been taking transactions on the Bitcoin peer-to-peer network, modifying them slightly, and rapidly sending them to a miner. The modified transaction often gets mined first, pre-empting the original transaction. The attacker can only make "trivial" changes to a transaction, so exactly the same Bitcoin transfer happens as was intended - the same amount is moved between the same addresses, so this attack seems entirely pointless. However, each transaction is identified by a cryptographic hash, and even a trivial change to the transaction causes the transaction hash to change. Changing the hash of a transaction can have unexpected effects on the Bitcoin system.

A very quick explanation of transactions

A Bitcoin transaction moves bitcoins from one address to another. A transaction must be signed with the private key corresponding to the address, so only the owner of the bitcoins can move them. (This signing process is surprisingly complex.) The signature is then put in the middle of the transaction. Finally, the entire transaction (including the signature) is cryptographically hashed, and this hash is used to identify the transaction in the Bitcoin system. The important data is protected by the signature and can't be modified by an attacker. But there are few ways the signature itself can be changed, but still remain valid.

(This is oversimplified. For more details, see Bitcoins the hard way.)

Looking at a modified transaction

To find a transaction suffering from malleability, I looked at the unconfirmed transactions page. If a transaction gets modified, only one version will get mined successfully (and actually transfer bitcoins), and the other will remain unconfirmed (and have no effect). Among the many conditions enforced in mined blocks, the same bitcoins can't be spent twice, so both transactions will never be mined. This is why having two versions of a transaction doesn't result in two payments.

I picked a random unconfirmed transaction from Feb 11 to examine. (Unfortunately this transaction has been discarded since I wrote this article, breaking my links. But you can look up a different one if you want.) Blockchain.info helpfully includes a banner warning that something is wrong:

Warning! this transaction is a double spend of 112593804. You should be extremely careful when trusting any transactions to/from this sender.

Looking at the transactions, everything seems fine:

The confirmed transaction takes 0.01 BTC from 1JRQExbG6WAhPCWC5W5H7Rn1LannTx1Dix and transfers 0.0099 BTC to 1Hbum99G9Lp7PyQ2nYqDcN3jh5aw878bFt (the remainder is a mining fee of 0.001 BTC). This transaction has hash bba8c3d044828f099ae3bc5f3beaff2643e0202d6c121753b53536a49511c63f.

The unconfirmed transaction takes 0.01 BTC from 1JRQExbG6WAhPCWC5W5H7Rn1LannTx1Dix and transfers 0.0099 BTC to 1Hbum99G9Lp7PyQ2nYqDcN3jh5aw878bFt (the remainder is a mining fee of 0.001 BTC). This transaction has hash d36a0fcdf4b3ccfe114e882ef4159094d2012bc8b72dc6389862a7dc43dfa61c.

The scripts of both transactions appear identical:

Input Scripts
30450220539901ea7d6840eea8826c1f3d0d1fca7827e491deabcf17889e7a2e5a39f5a1022100fe745667e444978c51fdba6981505f0a68619f0289e5ff2352acbd31b3d23d8701 046c4ea0005563c20336d170e35ae2f168e890da34e63da7fff1cc8f2a54f60dc402b47574d6ce5c6c5d66db0845c7dabcb5d90d0d6ca9b703dc4d02f4501b6e44 OK
Output Scripts
OP_DUP OP_HASH160 b61c32ac39c63f919c4ce3a5df77590c5903d975 OP_EQUALVERIFY OP_CHECKSIG 
Both transactions look identical: the bitcoins are moving between the same accounts in both cases, the amounts are equal, and the scripts look identical. So why do they have different hashes? A clue is the unconfirmed transaction is 224 bytes and the confirmed transaction is 228 bytes.

Looking at the raw transactions also fails to show what is happening:

{
  "hash":"bba8c3d044828f099ae3bc5f3beaff2643e0202d6c121753b53536a49511c63f",
  "ver":1,
  "vin_sz":1,
  "vout_sz":1,
  "lock_time":0,
  "size":228,
  "in":[
    {
      "prev_out":{
        "hash":"3ceafb1d6864091a6c40f0f0fa7d4072d71a909820444ac307dcaa7a2d4b88d4",
        "n":1
      },
      "scriptSig":"30450220539901ea7d6840eea8826c1f3d0d1fca7827e491deabcf17889e7a2e5a39f5a1022100fe745667e444978c51fdba6981505f0a68619f0289e5ff2352acbd31b3d23d8701 046c4ea0005563c20336d170e35ae2f168e890da34e63da7fff1cc8f2a54f60dc402b47574d6ce5c6c5d66db0845c7dabcb5d90d0d6ca9b703dc4d02f4501b6e44"
    }
  ],
  "out":[
    {
      "value":"0.00990000",
      "scriptPubKey":"OP_DUP OP_HASH160 b61c32ac39c63f919c4ce3a5df77590c5903d975 OP_EQUALVERIFY OP_CHECKSIG"
    }
  ]
}

Even though the scripts are mostly in hex in this raw display, they have been parsed slightly, which hides what is going on. We need to get the full scripts here and here.

The unconfirmed transaction has script:

4830450220539901ea7d6840eea8826c1f3d0d1fca7827e491deabcf17889e7a2e5a39f5a1022100fe745667e444978c51fdba6981505f0a68619f0289e5ff2352acbd31b3d23d870141046c4ea0005563c20336d170e35ae2f168e890da34e63da7fff1cc8f2a54f60dc402b47574d6ce5c6c5d66db0845c7dabcb5d90d0d6ca9b703dc4d02f4501b6e44
The confirmed transaction has script:
4d480030450220539901ea7d6840eea8826c1f3d0d1fca7827e491deabcf17889e7a2e5a39f5a1022100fe745667e444978c51fdba6981505f0a68619f0289e5ff2352acbd31b3d23d87014d4100046c4ea0005563c20336d170e35ae2f168e890da34e63da7fff1cc8f2a54f60dc402b47574d6ce5c6c5d66db0845c7dabcb5d90d0d6ca9b703dc4d02f4501b6e44
There are a couple differences (highlighted in red). But what do they mean?

This script is the scriptSig, the signature of the transaction using the sender's private key. This signature proves the sender owns the bitcoins. However, the scriptSig isn't just a simple signature, but is actually a program written in Bitcoin's Script language. This program pushes the signature data onto the execution stack. The program from the unconfirmed script is interpreted as follows:

PUSHDATA 4848
signature
(DER)
sequence30
length45
integer02
length20
X539901ea7d6840eea8826c1f3d0d1fca7827e491deabcf17889e7a2e5a39f5a1
integer02
length21
Y 00fe745667e444978c51fdba6981505f0a68619f0289e5ff2352acbd31b3d23d87
SIGHASH_ALL01
PUSHDATA 4141
public key type04
X6c4ea0005563c20336d170e35ae2f168e890da34e63da7fff1cc8f2a54f60dc4
Y 02b47574d6ce5c6c5d66db0845c7dabcb5d90d0d6ca9b703dc4d02f4501b6e44

The program from the confirmed script is interpreted as follows:

OP_PUSHDATA2 00484d 48 00
signature
(DER)
sequence30
length45
integer02
length20
X539901ea7d6840eea8826c1f3d0d1fca7827e491deabcf17889e7a2e5a39f5a1
integer02
length21
Y 00fe745667e444978c51fdba6981505f0a68619f0289e5ff2352acbd31b3d23d87
SIGHASH_ALL01
OP_PUSHDATA2 00414d 41 00
public key type04
X6c4ea0005563c20336d170e35ae2f168e890da34e63da7fff1cc8f2a54f60dc4
Y 02b47574d6ce5c6c5d66db0845c7dabcb5d90d0d6ca9b703dc4d02f4501b6e44

Note the highlighted differences. The original transaction has a byte 0x48, which says to push (hex) 48 bytes of data. The modified transaction has a OP_PUSHDATA2 (0x4d), which says the next two bytes (48 00) are the number of bytes to push. In other words, both transactions do exactly the same thing (push the signature), but the original indicates this with 48, while the modified transaction indicates this with 4d 48 00. (Pushing the public key has a similar modification.) Since both scripts do exactly the same thing, both transactions are equally valid. However, since the data has changed, the transactions have two different hashes.

Why does malleability matter?

Transaction Malleability has been discussed for years and treated as a minor inconvenience. Both transactions have exactly the same effect, moving bitcoins between the same addresses. Only one transaction will be confirmed by miners, and the other will be discarded, so nobody gets paid twice even though there are two transactions.

There are, however, three problems that have turned up recently due to malleability.

First, the major Mt.Gox exchange stated they would stop processing bitcoin withdrawals until the Bitcoin network approves and standardizes on a new non-malleable hash. Apparently they were using the hash to track transactions, and would re-send bitcoins if the transaction didn't appear to go through. This is obviously a problem if the transaction did go through, but with a different hash.

Second, some wallet software would use both transactions to compute the balance, which caused it to show the wrong value.

Finally, due to the way Bitcoin handles change, malleability could cause a second transaction to fail. This requires a bit more explanation.

Failures due to change and malleability

The Bitcoin protocol doesn't really move bitcoins from address to address. Instead, it takes bitcoins from a set of inputs, and sends them to a set of outputs. Each output is an address (actually a script, but let's ignore that for now). Each input is an output from a previous transaction, and each input must be entirely spent.

As a result, if you have 3 bitcoins, and you want to spend one of them, the other two bitcoins get returned to you as change, sent to an address you control. If you then want to spend some of the change, your second transaction references the previous transaction that generates the change, referencing it by the hash of the first transaction. This is where malleability becomes a problem - if the first transaction's hash changed, the second transaction is not valid and the transaction will fail. Note that the change will still go to your proper address, so you can spend it as long as you use the correct (modified) transaction hash, so you don't lose any bitcoins. You just have the inconvenience of having a transaction rejected, and you'll need to redo it with the right hash.

The change problem only happens because some wallet software takes a shortcut, letting you (attempt to) spend the change before the transaction has been confirmed. The reasoning is that since it's your change from your transaction, you should be able to trust yourself. But that breaks down with malleability.

Malleability has been known for a long time

Transaction malleability has been known since 2011. The exact OP_PUSHDATA2 malleability used above was described four months ago here. There are many other types of malleability, which are explained here. The script code can be modified in several ways while leaving its operation unchanged. The signature itself can be encoded slightly differently. And interestingly, due to the mathematics of elliptic curves the numeric value of the signature can be negated, yielding a second valid signature.

Conclusion

Hopefully this has helped to make malleability more understandable. If you want to know more details of the Bitcoin protocol, including signing and hashing, see my previous article Bitcoins the hard way.

Bitcoins the hard way: Using the raw Bitcoin protocol

All the recent media attention on Bitcoin inspired me to learn how Bitcoin really works, right down to the bytes flowing through the network. Normal people use software[1] that hides what is really going on, but I wanted to get a hands-on understanding of the Bitcoin protocol. My goal was to use the Bitcoin system directly: create a Bitcoin transaction manually, feed it into the system as hex data, and see how it gets processed. This turned out to be considerably harder than I expected, but I learned a lot in the process and hopefully you will find it interesting.

(Feb 23: I have a new article that covers the technical details of mining. If you like this article, check out my mining article too.)

This blog post starts with a quick overview of Bitcoin and then jumps into the low-level details: creating a Bitcoin address, making a transaction, signing the transaction, feeding the transaction into the peer-to-peer network, and observing the results.

A quick overview of Bitcoin

I'll start with a quick overview of how Bitcoin works[2], before diving into the details. Bitcoin is a relatively new digital currency[3] that can be transmitted across the Internet. You can buy bitcoins[4] with dollars or other traditional money from sites such as Coinbase or MtGox[5], send bitcoins to other people, buy things with them at some places, and exchange bitcoins back into dollars.

To simplify slightly, bitcoins consist of entries in a distributed database that keeps track of the ownership of bitcoins. Unlike a bank, bitcoins are not tied to users or accounts. Instead bitcoins are owned by a Bitcoin address, for example 1KKKK6N21XKo48zWKuQKXdvSsCf95ibHFa.

Bitcoin transactions

A transaction is the mechanism for spending bitcoins. In a transaction, the owner of some bitcoins transfers ownership to a new address.

A key innovation of Bitcoin is how transactions are recorded in the distributed database through mining. Transactions are grouped into blocks and about every 10 minutes a new block of transactions is sent out, becoming part of the transaction log known as the blockchain, which indicates the transaction has been made (more-or-less) official.[6] Bitcoin mining is the process that puts transactions into a block, to make sure everyone has a consistent view of the transaction log. To mine a block, miners must find an extremely rare solution to an (otherwise-pointless) cryptographic problem. Finding this solution generates a mined block, which becomes part of the official block chain.

Mining is also the mechanism for new bitcoins to enter the system. When a block is successfully mined, new bitcoins are generated in the block and paid to the miner. This mining bounty is large - currently 25 bitcoins per block (about $19,000). In addition, the miner gets any fees associated with the transactions in the block. Because of this, mining is very competitive with many people attempting to mine blocks. The difficulty and competitiveness of mining is a key part of Bitcoin security, since it ensures that nobody can flood the system with bad blocks.

The peer-to-peer network

There is no centralized Bitcoin server. Instead, Bitcoin runs on a peer-to-peer network. If you run a Bitcoin client, you become part of that network. The nodes on the network exchange transactions, blocks, and addresses of other peers with each other. When you first connect to the network, your client downloads the blockchain from some random node or nodes. In turn, your client may provide data to other nodes. When you create a Bitcoin transaction, you send it to some peer, who sends it to other peers, and so on, until it reaches the entire network. Miners pick up your transaction, generate a mined block containing your transaction, and send this mined block to peers. Eventually your client will receive the block and your client shows that the transaction was processed.

Cryptography

Bitcoin uses digital signatures to ensure that only the owner of bitcoins can spend them. The owner of a Bitcoin address has the private key associated with the address. To spend bitcoins, they sign the transaction with this private key, which proves they are the owner. (It's somewhat like signing a physical check to make it valid.) A public key is associated with each Bitcoin address, and anyone can use it to verify the digital signature.

Blocks and transactions are identified by a 256-bit cryptographic hash of their contents. This hash value is used in multiple places in the Bitcoin protocol. In addition, finding a special hash is the difficult task in mining a block.

Bitcoin statistic coin ANTANA

Bitcoins do not really look like this. Photo credit: Antana, CC:by-sa

Diving into the raw Bitcoin protocol

The remainder of this article discusses, step by step, how I used the raw Bitcoin protocol. First I generated a Bitcoin address and keys. Next I made a transaction to move a small amount of bitcoins to this address. Signing this transaction took me a lot of time and difficulty. Finally, I fed this transaction into the Bitcoin peer-to-peer network and waited for it to get mined. The remainder of this article describes these steps in detail.

It turns out that actually using the Bitcoin protocol is harder than I expected. As you will see, the protocol is a bit of a jumble: it uses big-endian numbers, little-endian numbers, fixed-length numbers, variable-length numbers, custom encodings, DER encoding, and a variety of cryptographic algorithms, seemingly arbitrarily. As a result, there's a lot of annoying manipulation to get data into the right format.[7]

The second complication with using the protocol directly is that being cryptographic, it is very unforgiving. If you get one byte wrong, the transaction is rejected with no clue as to where the problem is.[8]

The final difficulty I encountered is that the process of signing a transaction is much more difficult than necessary, with a lot of details that need to be correct. In particular, the version of a transaction that gets signed is very different from the version that actually gets used.

Bitcoin addresses and keys

My first step was to create a Bitcoin address. Normally you use Bitcoin client software to create an address and the associated keys. However, I wrote some Python code to create the address, showing exactly what goes on behind the scenes.

Bitcoin uses a variety of keys and addresses, so the following diagram may help explain them. You start by creating a random 256-bit private key. The private key is needed to sign a transaction and thus transfer (spend) bitcoins. Thus, the private key must be kept secret or else your bitcoins can be stolen.

The Elliptic Curve DSA algorithm generates a 512-bit public key from the private key. (Elliptic curve cryptography will be discussed later.) This public key is used to verify the signature on a transaction. Inconveniently, the Bitcoin protocol adds a prefix of 04 to the public key. The public key is not revealed until a transaction is signed, unlike most systems where the public key is made public.

How bitcoin keys and addresses are related

How bitcoin keys and addresses are related

The next step is to generate the Bitcoin address that is shared with others. Since the 512-bit public key is inconveniently large, it is hashed down to 160 bits using the SHA-256 and RIPEMD hash algorithms.[9] The key is then encoded in ASCII using Bitcoin's custom Base58Check encoding.[10] The resulting address, such as 1KKKK6N21XKo48zWKuQKXdvSsCf95ibHFa, is the address people publish in order to receive bitcoins. Note that you cannot determine the public key or the private key from the address. If you lose your private key (for instance by throwing out your hard drive), your bitcoins are lost forever.

Finally, the Wallet Interchange Format key (WIF) is used to add a private key to your client wallet software. This is simply a Base58Check encoding of the private key into ASCII, which is easily reversed to obtain the 256-bit private key. (I was curious if anyone would use the private key above to steal my 80 cents of bitcoins, and sure enough someone did.)

To summarize, there are three types of keys: the private key, the public key, and the hash of the public key, and they are represented externally in ASCII using Base58Check encoding. The private key is the important key, since it is required to access the bitcoins and the other keys can be generated from it. The public key hash is the Bitcoin address you see published.

I used the following code snippet[11] to generate a private key in WIF format and an address. The private key is simply a random 256-bit number. The ECDSA crypto library generates the public key from the private key.[12] The Bitcoin address is generated by SHA-256 hashing, RIPEMD-160 hashing, and then Base58 encoding with checksum. Finally, the private key is encoded in Base58Check to generate the WIF encoding used to enter a private key into Bitcoin client software.[1] Note: this Python random function is not cryptographically strong; use a better function if you're doing this for real.

Inside a transaction

A transaction is the basic operation in the Bitcoin system. You might expect that a transaction simply moves some bitcoins from one address to another address, but it's more complicated than that. A Bitcoin transaction moves bitcoins between one or more inputs and outputs. Each input is a transaction and address supplying bitcoins. Each output is an address receiving bitcoin, along with the amount of bitcoins going to that address.

A sample Bitcoin transaction. Transaction C spends .008 bitcoins from Transactions A and B.

A sample Bitcoin transaction. Transaction C spends .008 bitcoins from Transactions A and B.

The diagram above shows a sample transaction "C". In this transaction, .005 BTC are taken from an address in Transaction A, and .003 BTC are taken from an address in Transaction B. (Note that arrows are references to the previous outputs, so are backwards to the flow of bitcoins.) For the outputs, .003 BTC are directed to the first address and .004 BTC are directed to the second address. The leftover .001 BTC goes to the miner of the block as a fee. Note that the .015 BTC in the other output of Transaction A is not spent in this transaction.

Each input used must be entirely spent in a transaction. If an address received 100 bitcoins in a transaction and you just want to spend 1 bitcoin, the transaction must spend all 100. The solution is to use a second output for change, which returns the 99 leftover bitcoins back to you.

Transactions can also include fees. If there are any bitcoins left over after adding up the inputs and subtracting the outputs, the remainder is a fee paid to the miner. The fee isn't strictly required, but transactions without a fee will be a low priority for miners and may not be processed for days or may be discarded entirely.[13] A typical fee for a transaction is 0.0002 bitcoins (about 20 cents), so fees are low but not trivial.

Manually creating a transaction

For my experiment I used a simple transaction with one input and one output, which is shown below. I started by buying bitcoins from Coinbase and putting 0.00101234 bitcoins into address 1MMMMSUb1piy2ufrSguNUdFmAcvqrQF8M5, which was transaction 81b4c832.... My goal was to create a transaction to transfer these bitcoins to the address I created above, 1KKKK6N21XKo48zWKuQKXdvSsCf95ibHFa, subtracting a fee of 0.0001 bitcoins. Thus, the destination address will receive 0.00091234 bitcoins.

Structure of the example Bitcoin transaction.

Structure of the example Bitcoin transaction.

Following the specification, the unsigned transaction can be assembled fairly easily, as shown below. There is one input, which is using output 0 (the first output) from transaction 81b4c832.... Note that this transaction hash is inconveniently reversed in the transaction. The output amount is 0.00091234 bitcoins (91234 is 0x016462 in hex), which is stored in the value field in little-endian form. The cryptographic parts - scriptSig and scriptPubKey - are more complex and will be discussed later.

version01 00 00 00
input count01
inputprevious output hash
(reversed)
48 4d 40 d4 5b 9e a0 d6 52 fc a8 25 8a b7 ca a4 25 41 eb 52 97 58 57 f9 6f b5 0c d7 32 c8 b4 81
previous output index00 00 00 00
script length
scriptSigscript containing signature
sequenceff ff ff ff
output count01
outputvalue62 64 01 00 00 00 00 00
script length
scriptPubKeyscript containing destination address
block lock time00 00 00 00

Here's the code I used to generate this unsigned transaction. It's just a matter of packing the data into binary. Signing the transaction is the hard part, as you'll see next.

How Bitcoin transactions are signed

The following diagram gives a simplified view of how transactions are signed and linked together.[14] Consider the middle transaction, transferring bitcoins from address B to address C. The contents of the transaction (including the hash of the previous transaction) are hashed and signed with B's private key. In addition, B's public key is included in the transaction.

By performing several steps, anyone can verify that the transaction is authorized by B. First, B's public key must correspond to B's address in the previous transaction, proving the public key is valid. (The address can easily be derived from the public key, as explained earlier.) Next, B's signature of the transaction can be verified using the B's public key in the transaction. These steps ensure that the transaction is valid and authorized by B. One unexpected part of Bitcoin is that B's public key isn't made public until it is used in a transaction.

With this system, bitcoins are passed from address to address through a chain of transactions. Each step in the chain can be verified to ensure that bitcoins are being spent validly. Note that transactions can have multiple inputs and outputs in general, so the chain branches out into a tree.

How Bitcoin transactions are chained together.

How Bitcoin transactions are chained together.[14]

The Bitcoin scripting language

You might expect that a Bitcoin transaction is signed simply by including the signature in the transaction, but the process is much more complicated. In fact, there is a small program inside each transaction that gets executed to decide if a transaction is valid. This program is written in Script, the stack-based Bitcoin scripting language. Complex redemption conditions can be expressed in this language. For instance, an escrow system can require two out of three specific users must sign the transaction to spend it. Or various types of contracts can be set up.[15]

The Script language is surprisingly complex, with about 80 different opcodes. It includes arithmetic, bitwise operations, string operations, conditionals, and stack manipulation. The language also includes the necessary cryptographic operations (SHA-256, RIPEMD, etc.) as primitives. In order to ensure that scripts terminate, the language does not contain any looping operations. (As a consequence, it is not Turing-complete.) In practice, however, only a few types of transactions are supported.[16]

In order for a Bitcoin transaction to be valid, the two parts of the redemption script must run successfully. The script in the old transaction is called scriptPubKey and the script in the new transaction is called scriptSig. To verify a transaction, the scriptSig executed followed by the scriptPubKey. If the script completes successfully, the transaction is valid and the Bitcoin can be spent. Otherwise, the transaction is invalid. The point of this is that the scriptPubKey in the old transaction defines the conditions for spending the bitcoins. The scriptSig in the new transaction must provide the data to satisfy the conditions.

In a standard transaction, the scriptSig pushes the signature (generated from the private key) to the stack, followed by the public key. Next, the scriptPubKey (from the source transaction) is executed to verify the public key and then verify the signature.

As expressed in Script, the scriptSig is:

PUSHDATA
signature data and SIGHASH_ALL
PUSHDATA
public key data
The scriptPubKey is:
OP_DUP
OP_HASH160
PUSHDATA
Bitcoin address (public key hash)
OP_EQUALVERIFY
OP_CHECKSIG

When this code executes, PUSHDATA first pushes the signature to the stack. The next PUSHDATA pushes the public key to the stack. Next, OP_DUP duplicates the public key on the stack. OP_HASH160 computes the 160-bit hash of the public key. PUSHDATA pushes the required Bitcoin address. Then OP_EQUALVERIFY verifies the top two stack values are equal - that the public key hash from the new transaction matches the address in the old address. This proves that the public key is valid. Next, OP_CHECKSIG checks that the signature of the transaction matches the public key and signature on the stack. This proves that the signature is valid.

Signing the transaction

I found signing the transaction to be the hardest part of using Bitcoin manually, with a process that is surprisingly difficult and error-prone. The basic idea is to use the ECDSA elliptic curve algorithm and the private key to generate a digital signature of the transaction, but the details are tricky. The signing process has been described through a 19-step process (more info). Click the thumbnail below for a detailed diagram of the process.

The biggest complication is the signature appears in the middle of the transaction, which raises the question of how to sign the transaction before you have the signature. To avoid this problem, the scriptPubKey script is copied from the source transaction into the spending transaction (i.e. the transaction that is being signed) before computing the signature. Then the signature is turned into code in the Script language, creating the scriptSig script that is embedded in the transaction. It appears that using the previous transaction's scriptPubKey during signing is for historical reasons rather than any logical reason.[17] For transactions with multiple inputs, signing is even more complicated since each input requires a separate signature, but I won't go into the details.

One step that tripped me up is the hash type. Before signing, the transaction has a hash type constant temporarily appended. For a regular transaction, this is SIGHASH_ALL (0x00000001). After signing, this hash type is removed from the end of the transaction and appended to the scriptSig.

Another annoying thing about the Bitcoin protocol is that the signature and public key are both 512-bit elliptic curve values, but they are represented in totally different ways: the signature is encoded with DER encoding but the public key is represented as plain bytes. In addition, both values have an extra byte, but positioned inconsistently: SIGHASH_ALL is put after the signature, and type 04 is put before the public key.

Debugging the signature was made more difficult because the ECDSA algorithm uses a random number.[18] Thus, the signature is different every time you compute it, so it can't be compared with a known-good signature.

Update (Feb 2014): An important side-effect of the signature changing every time is that if you re-sign a transaction, the transaction's hash will change. This is known as Transaction Malleability. There are also ways that third parties can modify transactions in trivial ways that change the hash but not the meaning of the transaction. Although it has been known for years, malleability has recently caused big problems (Feb 2014) with MtGox (press release).

With these complications it took me a long time to get the signature to work. Eventually, though, I got all the bugs out of my signing code and succesfully signed a transaction. Here's the code snippet I used.

The final scriptSig contains the signature along with the public key for the source address (1MMMMSUb1piy2ufrSguNUdFmAcvqrQF8M5). This proves I am allowed to spend these bitcoins, making the transaction valid.

PUSHDATA 4747
signature
(DER)
sequence30
length44
integer02
length20
X2c b2 65 bf 10 70 7b f4 93 46 c3 51 5d d3 d1 6f c4 54 61 8c 58 ec 0a 0f f4 48 a6 76 c5 4f f7 13
integer02
length20
Y 6c 66 24 d7 62 a1 fc ef 46 18 28 4e ad 8f 08 67 8a c0 5b 13 c8 42 35 f1 65 4e 6a d1 68 23 3e 82
SIGHASH_ALL01
PUSHDATA 4141
public key type04
X14 e3 01 b2 32 8f 17 44 2c 0b 83 10 d7 87 bf 3d 8a 40 4c fb d0 70 4f 13 5b 6a d4 b2 d3 ee 75 13
Y 10 f9 81 92 6e 53 a6 e8 c3 9b d7 d3 fe fd 57 6c 54 3c ce 49 3c ba c0 63 88 f2 65 1d 1a ac bf cd

The final scriptPubKey contains the script that must succeed to spend the bitcoins. Note that this script is executed at some arbitrary time in the future when the bitcoins are spent. It contains the destination address (1KKKK6N21XKo48zWKuQKXdvSsCf95ibHFa) expressed in hex, not Base58Check. The effect is that only the owner of the private key for this address can spend the bitcoins, so that address is in effect the owner.

OP_DUP76
OP_HASH160a9
PUSHDATA 1414
public key hashc8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c
OP_EQUALVERIFY88
OP_CHECKSIGac

The final transaction

Once all the necessary methods are in place, the final transaction can be assembled. The final transaction is shown below. This combines the scriptSig and scriptPubKey above with the unsigned transaction described earlier.

version01 00 00 00
input count01
inputprevious output hash
(reversed)
48 4d 40 d4 5b 9e a0 d6 52 fc a8 25 8a b7 ca a4 25 41 eb 52 97 58 57 f9 6f b5 0c d7 32 c8 b4 81
previous output index00 00 00 00
script length8a
scriptSig47 30 44 02 20 2c b2 65 bf 10 70 7b f4 93 46 c3 51 5d d3 d1 6f c4 54 61 8c 58 ec 0a 0f f4 48 a6 76 c5 4f f7 13 02 20 6c 66 24 d7 62 a1 fc ef 46 18 28 4e ad 8f 08 67 8a c0 5b 13 c8 42 35 f1 65 4e 6a d1 68 23 3e 82 01 41 04 14 e3 01 b2 32 8f 17 44 2c 0b 83 10 d7 87 bf 3d 8a 40 4c fb d0 70 4f 13 5b 6a d4 b2 d3 ee 75 13 10 f9 81 92 6e 53 a6 e8 c3 9b d7 d3 fe fd 57 6c 54 3c ce 49 3c ba c0 63 88 f2 65 1d 1a ac bf cd
sequenceff ff ff ff
output count01
outputvalue62 64 01 00 00 00 00 00
script length19
scriptPubKey76 a9 14 c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c 88 ac
block lock time00 00 00 00

A tangent: understanding elliptic curves

Bitcoin uses elliptic curves as part of the signing algorithm. I had heard about elliptic curves before in the context of solving Fermat's Last Theorem, so I was curious about what they are. The mathematics of elliptic curves is interesting, so I'll take a detour and give a quick overview.

The name elliptic curve is confusing: elliptic curves are not ellipses, do not look anything like ellipses, and they have very little to do with ellipses. An elliptic curve is a curve satisfying the fairly simple equation y^2 = x^3 + ax + b. Bitcoin uses a specific elliptic curve called secp256k1 with the simple equation y^2=x^3+7. [25]

Elliptic curve formula used by Bitcoin.

Elliptic curve formula used by Bitcoin.

An important property of elliptic curves is that you can define addition of points on the curve with a simple rule: if you draw a straight line through the curve and it hits three points A, B, and C, then addition is defined by A+B+C=0. Due to the special nature of elliptic curves, addition defined in this way works "normally" and forms a group. With addition defined, you can define integer multiplication: e.g. 4A = A+A+A+A.

What makes elliptic curves useful cryptographically is that it's fast to do integer multiplication, but division basically requires brute force. For example, you can compute a product such as 12345678*A = Q really quickly (by computing powers of 2), but if you only know A and Q solving n*A = Q is hard. In elliptic curve cryptography, the secret number 12345678 would be the private key and the point Q on the curve would be the public key.

In cryptography, instead of using real-valued points on the curve, the coordinates are integers modulo a prime.[19] One of the surprising properties of elliptic curves is the math works pretty much the same whether you use real numbers or modulo arithmetic. Because of this, Bitcoin's elliptic curve doesn't look like the picture above, but is a random-looking mess of 256-bit points (imagine a big gray square of points).

The Elliptic Curve Digital Signature Algorithm (ECDSA) takes a message hash, and then does some straightforward elliptic curve arithmetic using the message, the private key, and a random number[18] to generate a new point on the curve that gives a signature. Anyone who has the public key, the message, and the signature can do some simple elliptic curve arithmetic to verify that the signature is valid. Thus, only the person with the private key can sign a message, but anyone with the public key can verify the message.

For more on elliptic curves, see the references[20].

Sending my transaction into the peer-to-peer network

Leaving elliptic curves behind, at this point I've created a transaction and signed it. The next step is to send it into the peer-to-peer network, where it will be picked up by miners and incorporated into a block.

How to find peers

The first step in using the peer-to-peer network is finding a peer. The list of peers changes every few seconds, whenever someone runs a client. Once a node is connected to a peer node, they share new peers by exchanging addr messages whenever a new peer is discovered. Thus, new peers rapidly spread through the system.

There's a chicken-and-egg problem, though, of how to find the first peer. Bitcoin clients solve this problem with several methods. Several reliable peers are registered in DNS under the name bitseed.xf2.org. By doing a nslookup, a client gets the IP addresses of these peers, and hopefully one of them will work. If that doesn't work, a seed list of peers is hardcoded into the client. [26]

nslookup can be used to find Bitcoin peers.

nslookup can be used to find Bitcoin peers.

Peers enter and leave the network when ordinary users start and stop Bitcoin clients, so there is a lot of turnover in clients. The clients I use are unlikely to be operational right now, so you'll need to find new peers if you want to do experiments. You may need to try a bunch to find one that works.

Talking to peers

Once I had the address of a working peer, the next step was to send my transaction into the peer-to-peer network.[8] Using the peer-to-peer protocol is pretty straightforward. I opened a TCP connection to an arbitrary peer on port 8333, started sending messages, and received messages in turn. The Bitcoin peer-to-peer protocol is pretty forgiving; peers would keep communicating even if I totally messed up requests.

Important note: as a few people pointed out, if you want to experiment you should use the Bitcoin Testnet, which lets you experiment with "fake" bitcoins, since it's easy to lose your valuable bitcoins if you mess up on the real network. (For example, if you forget the change address in a transaction, excess bitcoins will go to the miners as a fee.) But I figured I would use the real Bitcoin network and risk my $1.00 worth of bitcoins.

The protocol consists of about 24 different message types. Each message is a fairly straightforward binary blob containing an ASCII command name and a binary payload appropriate to the command. The protocol is well-documented on the Bitcoin wiki.

The first step when connecting to a peer is to establish the connection by exchanging version messages. First I send a version message with my protocol version number[21], address, and a few other things. The peer sends its version message back. After this, nodes are supposed to acknowledge the version message with a verack message. (As I mentioned, the protocol is forgiving - everything works fine even if I skip the verack.)

Generating the version message isn't totally trivial since it has a bunch of fields, but it can be created with a few lines of Python. makeMessage below builds an arbitrary peer-to-peer message from the magic number, command name, and payload. getVersionMessage creates the payload for a version message by packing together the various fields.

Sending a transaction: tx

I sent the transaction into the peer-to-peer network with the stripped-down Python script below. The script sends a version message, receives (and ignores) the peer's version and verack messages, and then sends the transaction as a tx message. The hex string is the transaction that I created earlier.

The following screenshot shows how sending my transaction appears in the Wireshark network analysis program[22]. I wrote Python scripts to process Bitcoin network traffic, but to keep things simple I'll just use Wireshark here. The "tx" message type is visible in the ASCII dump, followed on the next line by the start of my transaction (01 00 ...).

A transaction uploaded to Bitcoin, as seen in Wireshark.

A transaction uploaded to Bitcoin, as seen in Wireshark.

To monitor the progress of my transaction, I had a socket opened to another random peer. Five seconds after sending my transaction, the other peer sent me a tx message with the hash of the transaction I just sent. Thus, it took just a few seconds for my transaction to get passed around the peer-to-peer network, or at least part of it.

Victory: my transaction is mined

After sending my transaction into the peer-to-peer network, I needed to wait for it to be mined before I could claim victory. Ten minutes later my script received an inv message with a new block (see Wireshark trace below). Checking this block showed that it contained my transaction, proving my transaction worked. I could also verify the success of this transaction by looking in my Bitcoin wallet and by checking online. Thus, after a lot of effort, I had successfully created a transaction manually and had it accepted by the system. (Needless to say, my first few transaction attempts weren't successful - my faulty transactions vanished into the network, never to be seen again.[8])

A new block in Bitcoin, as seen in Wireshark.

A new block in Bitcoin, as seen in Wireshark.

My transaction was mined by the large GHash.IO mining pool, into block #279068 with hash 0000000000000001a27b1d6eb8c405410398ece796e742da3b3e35363c2219ee. (The hash is reversed in inv message above: ee19...) Note that the hash starts with a large number of zeros - finding such a literally one in a quintillion value is what makes mining so difficult. This particular block contains 462 transactions, of which my transaction is just one.

For mining this block, the miners received the reward of 25 bitcoins, and total fees of 0.104 bitcoins, approximately $19,000 and $80 respectively. I paid a fee of 0.0001 bitcoins, approximately 8 cents or 10% of my transaction. The mining process is very interesting, but I'll leave that for a future article.

Untitled

Bitcoin mining normally uses special-purpose ASIC hardware, designed to compute hashes at high speed. Photo credit: Gastev, CC:by

Conclusion

Using the raw Bitcoin protocol turned out to be harder than I expected, but I learned a lot about bitcoins along the way, and I hope you did too. My code is purely for demonstration - if you actually want to use bitcoins through Python, use a real library[24] rather than my code.

Notes and references

[1] The original Bitcoin client is Bitcoin-qt. In case you're wondering why qt, the client uses the common Qt UI framework. Alternatively you can use wallet software that doesn't participate in the peer-to-peer network, such as Electrum or MultiBit. Or you can use an online wallet such as Blockchain.info.

[2] A couple good articles on Bitcoin are How it works and the very thorough How the Bitcoin protocol actually works.

[3] The original Bitcoin paper is Bitcoin: A Peer-to-Peer Electronic Cash System written by the pseudonymous Satoshi Nakamoto in 2008. The true identity of Satoshi Nakamoto is unknown, although there are many theories.

[4] You may have noticed that sometimes Bitcoin is capitalized and sometimes not. It's not a problem with my shift key - the "official" style is to capitalize Bitcoin when referring to the system, and lower-case bitcoins when referring to the currency units.

[5] In case you're wondering how the popular MtGox Bitcoin exchange got its name, it was originally a trading card exchange called "Magic: The Gathering Online Exchange" and later took the acronym as its name.

[6] For more information on what data is in the blockchain, see the very helpful article Bitcoin, litecoin, dogecoin: How to explore the block chain.

[7] I'm not the only one who finds the Bitcoin transaction format inconvenient. For a rant on how messed up it is, see Criticisms of Bitcoin's raw txn format.

[8] You can also generate transaction and send raw transactions into the Bitcoin network using the bitcoin-qt console. Type sendrawtransaction a1b2c3d4.... This has the advantage of providing information in the debug log if the transaction is rejected. If you just want to experiment with the Bitcoin network, this is much, much easier than my manual approach.

[9] Apparently there's no solid reason to use RIPEMD-160 hashing to create the address and SHA-256 hashing elsewhere, beyond a vague sense that using a different hash algorithm helps security. See discussion. Using one round of SHA-256 is subject to a length extension attack, which explains why double-hashing is used.

[10] The Base58Check algorithm is documented on the Bitcoin wiki. It is similar to base 64 encoding, except it omits the O, 0, I, and l characters to avoid ambiguity in printed text. A 4-byte checksum guards against errors, since using an erroneous bitcoin address will cause the bitcoins to be lost forever.

[11] Some boilerplate has been removed from the code snippets. For the full Python code, see my repository shirriff/bitcoin-code on GitHub. You will also need the ecdsa cryptography library.

[12] You may wonder how I ended up with addresses with nonrandom prefixes such as 1MMMM. The answer is brute force - I ran the address generation script overnight and collected some good addresses. (These addresses made it much easier to recognize my transactions in my testing.) There are scripts and websites that will generate these "vanity" addresses for you.

[13] For a summary of Bitcoin fees, see bitcoinfees.com. This recent Reddit discussion of fees is also interesting.

[14] The original Bitcoin paper has a similar figure showing how transactions are chained together. I find it very confusing though, since it doesn't distinguish between the address and the public key.

[15] For details on the different types of contracts that can be set up with Bitcoin, see Contracts. One interesting type is the 2-of-3 escrow transaction, where two out of three parties must sign the transaction to release the bitcoins. Bitrated is one site that provides these.

[16] Although Bitcoin's Script language is very flexible, the Bitcoin network only permits a few standard transaction types and non-standard transactions are not propagated (details). Some miners will accept non-standard transactions directly, though.

[17] There isn't a security benefit from copying the scriptPubKey into the spending transaction before signing since the hash of the original transaction is included in the spending transaction. For discussion, see Why TxPrev.PkScript is inserted into TxCopy during signature check?

[18] The random number used in the elliptic curve signature algorithm is critical to the security of signing. Sony used a constant instead of a random number in the PlayStation 3, allowing the private key to be determined. In an incident related to Bitcoin, a weakness in the random number generator allowed bitcoins to be stolen from Android clients.

[19] For Bitcoin, the coordinates on the elliptic curve are integers modulo the prime2^256 - 2^32 - 2^9 -2^8 - 2^7 - 2^6 -2^4 -1, which is very nearly 2^256. This is why the keys in Bitcoin are 256-bit keys.

[20] For information on the historical connection between elliptic curves and ellipses (the equation turns up when integrating to compute the arc length of an ellipse) see the interesting article Why Ellipses Are Not Elliptic Curves, Adrian Rice and Ezra Brown, Mathematics Magazine, vol. 85, 2012, pp. 163-176. For more introductory information on elliptic curve cryptography, see ECC tutorial or A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography. For more on the mathematics of elliptic curves, see An Introduction to the Theory of Elliptic Curves by Joseph H. Silverman. Three Fermat trails to elliptic curves includes a discussion of how Fermat's Last Theorem was solved with elliptic curves.

[21] There doesn't seem to be documentation on the different Bitcoin protocol versions other than the code. I'm using version 60002 somewhat arbitrarily.

[22] The Wireshark network analysis software can dump out most types of Bitcoin packets, but only if you download a recent "beta release - I'm using version 1.11.2.

[24] Several Bitcoin libraries in Python are bitcoin-python, pycoin, and python-bitcoinlib.

[25] The elliptic curve plot was generated from the Sage mathematics package:

var("x y")
implicit_plot(y^2-x^3-7, (x,-10, 10), (y,-10, 10), figsize=3, title="y^2=x^3+7")

[26] The hardcoded peer list in the Bitcoin client is in chainparams.cpp in the array pnseed. For more information on finding Bitcoin peers, see How Bitcoin clients find each other or Satoshi client node discovery.