Showing posts with label 386. Show all posts
Showing posts with label 386. Show all posts

The absurdly complicated circuitry for the 386 processor's registers

The groundbreaking Intel 386 processor (1985) was the first 32-bit processor in the x86 architecture. Like most processors, the 386 contains numerous registers; registers are a key part of a processor because they provide storage that is much faster than main memory. The register set of the 386 includes general-purpose registers, index registers, and segment selectors, as well as registers with special functions for memory management and operating system implementation. In this blog post, I look at the silicon die of the 386 and explain how the processor implements its main registers.

It turns out that the circuitry that implements the 386's registers is much more complicated than one would expect. For the 30 registers that I examine, instead of using a standard circuit, the 386 uses six different circuits, each one optimized for the particular characteristics of the register. For some registers, Intel squeezes register cells together to double the storage capacity. Other registers support accesses of 8, 16, or 32 bits at a time. Much of the register file is "triple-ported", allowing two registers to be read simultaneously while a value is written to a third register. Finally, I was surprised to find that registers don't store bits in order: the lower 16 bits of each register are interleaved, while the upper 16 bits are stored linearly.

The photo below shows the 386's shiny fingernail-sized silicon die under a special metallurgical microscope. I've labeled the main functional blocks. For this post, the Data Unit in the lower left quadrant of the chip is the relevant component. It consists of the 32-bit arithmetic logic unit (ALU) along with the processor's main register bank (highlighted in red at the bottom). The circuitry, called the datapath, can be viewed as the heart of the processor.

This die photo of the 386 shows the location of the registers. Click this image (or any other) for a larger version.

This die photo of the 386 shows the location of the registers. Click this image (or any other) for a larger version.

The datapath is built with a regular structure: each register or ALU functional unit is a horizontal stripe of circuitry, forming the horizontal bands visible in the image. For the most part, this circuitry consists of a carefully optimized circuit copied 32 times, once for each bit of the processor. Each circuit for one bit is exactly the same width—60 µm—so the functional blocks can be stacked together like microscopic LEGO bricks. To link these circuits, metal bus lines run vertically through the datapath in groups of 32, allowing data to flow up and down through the blocks. Meanwhile, control lines run horizontally, enabling ALU operations or register reads and writes; the irregular circuitry on the right side of the Data Unit produces the signals for these control lines, activating the appropriate control lines for each instruction.

The datapath is highly structured to maximize performance while minimizing its area on the die. Below, I'll look at how the registers are implemented according to this structure.

The 386's registers

A processor's registers are one of the most visible features of the processor architecture. The 386 processor contains 16 registers for use by application programmers, a small number by modern standards, but large enough for the time. The diagram below shows the eight 32-bit general-purpose registers. At the top are four registers called EAX, EBX, ECX, and EDX. Although these registers are 32-bit registers, they can also be treated as 16 or 8-bit registers for backward compatibility with earlier processors. For instance, the lower half of EAX can be accessed as the 16-bit register AX, while the bottom byte of EAX can be accessed as the 8-bit register AL. Moreover, bits 15-8 can also be accessed as an 8-bit register called AH. In other words, there are four different ways to access the EAX register, and similarly for the other three registers. As will be seen, these features complicate the implementation of the register set.

The general purpose registers in the 386. From 80386 Programmer's Reference Manual, page 2-8.

The general purpose registers in the 386. From 80386 Programmer's Reference Manual, page 2-8.

The bottom half of the diagram shows that the 32-bit EBP, ESI, EDI, and ESP registers can also be treated as 16-bit registers BP, SI, DI, and SP. Unlike the previous registers, these ones cannot be treated as 8-bit registers. The 386 also has six segment registers that define the start of memory segments; these are 16-bit registers. The 16 application registers are rounded out by the status flags and instruction pointer (EIP); they are viewed as 32-bit registers, but their implementation is more complicated. The 386 also has numerous registers for operating system programming, but I won't discuss them here, since they are likely in other parts of the chip.1 Finally, the 386 has numerous temporary registers that are not visible to the programmer but are used by the microcode to perform complex instructions.

The 6T and 8T static RAM cells

The 386's registers are implemented with static RAM cells, a circuit that can hold one bit. These cells are arranged into a grid to provide multiple registers. Static RAM can be contrasted with the dynamic RAM that computers use for their main memory: dynamic RAM holds each bit in a tiny capacitor, while static RAM uses a faster but larger and more complicated circuit. Since main memory holds gigabytes of data, it uses dynamic RAM to provide dense and inexpensive storage. But the tradeoffs are different for registers: the storage capacity is small, but speed is of the essence. Thus, registers use the static RAM circuit that I'll explain below.

The concept behind a static RAM cell is to connect two inverters into a loop. If an inverter has a "0" as input, it will output a "1", and vice versa. Thus, the inverter loop will be stable, with one inverter on and one inverter off, and each inverter supporting the other. Depending on which inverter is on, the circuit stores a 0 or a 1, as shown below. Thus, the pair of inverters provides one bit of memory.

Two inverters in a loop can store a 0 or a 1.

Two inverters in a loop can store a 0 or a 1.

To be useful, however, the inverter loop needs a way to store a bit into it, as well as a way to read out the stored bit. To write a new value into the circuit, two signals are fed in, forcing the inverters to the desired new values. One inverter receives the new bit value, while the other inverter receives the complemented bit value. This may seem like a brute-force way to update the bit, but it works. The trick is that the inverters in the cell are small and weak, while the input signals are higher current, able to overpower the inverters.2 These signals are fed in through wiring called "bitlines"; the bitlines can also be used to read the value stored in the cell.

By adding two pass transistors to the circuit, the cell can be read and written.

By adding two pass transistors to the circuit, the cell can be read and written.

To control access to the register, the bitlines are connected to the inverters through pass transistors, which act as switches to control access to the inverter loop.3 When the pass transistors are on, the signals on the write lines can pass through to the inverters. But when the pass transistors are off, the inverters are isolated from the write lines. The pass transistors are turned on by a control signal, called a "wordline" since it controls access to a word of storage in the register. Since each inverter is constructed from two transistors, the circuit above consists of six transistors—thus this circuit is called a "6T" cell.

The 6T cell uses the same bitlines for reading and writing, so you can't read and write to registers simultaneously. But adding two transistors creates an "8T" circuit that lets you read from one register and write to another register at the same time. (In technical terms, the register file is two-ported.) In the 8T schematic below, the two additional transistors (G and H) are used for reading. Transistor G buffers the cell's value; it turns on if the inverter output is high, pulling the read output bitline low.4 Transistor H is a pass transistor that blocks this signal until a read is performed on this register; it is controlled by a read wordline. Note that there are two bitlines for writing (as before) along with one bitline for reading.

Schematic of a storage cell. Each transistor is labeled with a letter.

Schematic of a storage cell. Each transistor is labeled with a letter.

To construct registers (or memory), a grid is constructed from these cells. Each row corresponds to a register, while each column corresponds to a bit position. The horizontal lines are the wordlines, selecting which word to access, while the vertical lines are the bitlines, passing bits in or out of the registers. For a write, the vertical bitlines provide the 32 bits (along with their complements). For a read, the vertical bitlines receive the 32 bits from the register. A wordline is activated to read or write the selected register. To summarize: each row is a register, data flows vertically, and control signals flow horizontally.

Static memory cells (8T) organized into a grid.

Static memory cells (8T) organized into a grid.

Six register circuits in the 386

The die photo below zooms in on the register circuitry in the lower left corner of the 386 processor. You can see the arrangement of storage cells into a grid, but note that the pattern changes from row to row. This circuitry implements 30 registers: 22 of the registers hold 32 bits, while the bottom ones are 16-bit registers. By studying the die, I determined that there are six different register circuits, which I've arbitrarily labeled (a) to (f). In this section, I'll describe these six types of registers.

The 386's main register bank, at the bottom of the datapath.  The numbers show how many bits of the register can be accessed.

The 386's main register bank, at the bottom of the datapath. The numbers show how many bits of the register can be accessed.

I'll start at the bottom with the simplest circuit: eight 16-bit registers that I'm calling type (f). You can see a "notch" on the left side of the register file because these registers are half the width of the other registers (16 bits versus 32 bits). These registers are implemented with the 8T circuit described earlier, making them dual ported: one register can be read while another register is written. As described earlier, three vertical bus lines pass through each bit: one bitline for reading and two bitlines (with opposite polarity) for writing. Each register has two control lines (wordlines): one to select a register for reading and another to select a register for writing.

The photo below shows how four cells of type (f) are implemented on the chip. In this image, the chip's two metal layers have been removed along with most of the polysilicon wiring, showing the underlying silicon. The dark outlines indicate regions of doped silicon, while the stripes across the doped region correspond to transistor gates. I've labeled each transistor with a letter corresponding to the earlier schematic. Observe that the layout of the bottom half is a mirrored copy of the upper half, saving a bit of space. The left and right sides are approximately mirrored; the irregular shape allows separate read and wite wordlines to control the left and right halves without colliding.

Four memory cells of type (f), separated by dotted lines. The small irregular squares are remnants of polysilicon
that weren't fully removed.

Four memory cells of type (f), separated by dotted lines. The small irregular squares are remnants of polysilicon that weren't fully removed.

The 386's register file and datapath are designed with 60 µm of width assigned to each bit. However, the register circuit above is unusual: the image above is 60 µm wide but there are two register cells side-by-side. That is, the circuit crams two bits in 60 µm of width, rather than one. Thus, this dense layout implements two registers per row (with interleaved bits), providing twice the density of the other register circuits.

If you're curious to know how the transistors above are connected, the schematic below shows how the physical arrangement of the transistors above corresponds to two of the 8T memory cells described earlier. Since the 386 has two overlapping layers of metal, it is very hard to interpret a die photo with the metal layers. But see my earlier article if you want these photos.

Schematic of two static cells in the 386, labeled "R" and "L" for "right" and "left". The schematic approximately matches the physical layout.

Schematic of two static cells in the 386, labeled "R" and "L" for "right" and "left". The schematic approximately matches the physical layout.

Above the type (f) registers are 10 registers of type (e), occupying five rows of cells. These registers are the same 8T implementation as before, but these registers are 32 bits wide instead of 16. Thus, the register takes up the full width of the datapath, unlike the previous registers. As before, the double-density circuit implements two registers per row. The silicon layout is identical (apart from being 32 bits wide instead of 16), so I'm not including a photo.

Above those registers are four (d) registers, which are more complex. They are triple-ported registers, so one register can be written while two other registers are read. (This is useful for ALU operations, for instance, since two values can be added and the result written back at the same time.) To support reading a second register, another vertical bus line is added for each bit. Each cell has two more transistors to connect the cell to the new bitline. Another wordline controls the additional read path. Since each cell has two more transistors, there are 10 transistors in total and the circuit is called 10T.

Four cells of type (d). The striped green regions are the remnants of oxide layers that weren't completely removed, and can be ignored.

Four cells of type (d). The striped green regions are the remnants of oxide layers that weren't completely removed, and can be ignored.

The diagram above shows four memory cells of type (d). Each of these cells takes the full 60 µm of width, unlike the previous double-density cells. The cells are mirrored horizontally and vertically; this increases the density slightly since power lines can be shared between cells. I've labeled the transistors A through H as before, as well as the two additional transistors I and J for the second read line. The circuit is the same as before, except for the two additional transistors, but the silicon layout is significantly different.

Each of the (d) registers has five control lines. Two control lines select a register for reading, connecting the register to one of the two vertical read buses. The three write lines allow parts of the register to be written independently: the top 16 bits, the next 8 bits, or the bottom 8 bits. This is required by the x86 architecture, where a 32-bit register such as EAX can also be accessed as the 16-bit AX register, the 8-bit AH register, or the 8-bit AL register. Note that reading part of a register doesn't require separate control lines: the register provides all 32 bits and the reading circuit can ignore the bits it doesn't want.

Proceeding upward, the three (c) registers have a similar 10T implementation. These registers, however, do not support partial writes so all 32 bits must be written at once. As a result, these registers only require three control lines (two for reads and one for writes). With fewer control lines, the cells can be fit into less vertical space, so the layout is slightly more compact than the previous type (d) cells. The diagram below shows four type (c) rows above two type (d) rows. Although the cells have the same ten transistors, they have been shifted around somewhat.

Four rows of type (c) above two cells of type (d).

Four rows of type (c) above two cells of type (d).

Next are the four (b) registers, which support 16-bit writes and 32-bit writes (but not 8-bit writes). Thus, these registers have four control lines (two for reads and two for writes). The cells take slightly more vertical space than the (c) cells due to the additional control line, but the layout is almost identical.

Finally, the (a) register at the top has an unusual feature: it can receive a copy of the value in the register just below it. This value is copied directly between the registers, without using the read or write buses. This register has 3 control lines: one for read, one for write, and one for copying.

A cell of type (a), which can copy the value in the cell of type (b) below.

A cell of type (a), which can copy the value in the cell of type (b) below.

The diagram above shows a cell of type (a) above a cell of type (b). The cell of type (a) is based on the standard 8T circuit, but with six additional transistors to copy the value of the cell below. Specifically, two inverters buffer the output from cell (b), one inverter for each side of the cell. These inverters are implemented with transistors I1 through I4.5 Two transistors, S1 and S2, act as a pass-transistor switches between these inverters and the memory cell. When activated by the control line, the switch transistors allow the inverters to overwrite the memory cell with the contents of the cell below. Note that cell (a) takes considerably more vertical space because of the extra transistors.

Speculation on the physical layout of the registers

I haven't determined the mapping between the 386's registers and the 30 physical registers, but I can speculate. First, the 386 has four registers that can be accessed as 8, 16, or 32-bit registers: EAX, EBX, ECX, and EDX. These must map onto the (d) registers, which support these access patterns.

The four index registers (ESP, EBP, ESI, and EDI) can be used as 32-bit registers or 16-bit registers, matching the four (b) registers with the same properties. Which one of these registers can be copied to the type (a) register? Maybe the stack pointer (ESP) is copied as part of interrupt handling.

The register file has eight 16-bit registers, type (f). Since there are six 16-bit segment registers in the 386, I suspect the 16-bit registers are the segment registers and two additional registers. The LOADALL instruction gives some clues, suggesting that the two additional 16-bit registers are LDT (Local Descriptor Table register) and TR (Task Register). Moreover, LOADALL handles 10 temporary registers, matching the 10 registers of type (e) near the bottom of the register file. The three 32-bit registers of type (c) may be the CR0 control register and the DR6 and DR7 debug registers.

The six 16-bit segment registers in the 386.

The six 16-bit segment registers in the 386.

In this article, I'm only looking at the main register file in the datapath. The 386 presumably has other registers scattered around the chip for various purposes. For instance, the Segment Descriptor Cache contains multiple registers similar to type (e), probably holding cache entries. The processor status flags and the instruction pointer (EIP) may not be implemented as discrete registers.6

To the right of the register file, a complicated block of circuitry uses seven-bit values to select registers. Two values select the registers (or constants) to read, while a third value selects the register to write. I'm currently analyzing this circuitry, which should provide more insight into how the physical registers are assigned.

The shuffle network

There's one additional complication in the register layout. As mentioned earlier, the bottom 16 bits of the main registers can be treated as two 8-bit registers.7 For example, the 8-bit AH and AL registers form the bottom 16 bits of the EAX register. I explained earlier how the registers use multiple write control lines to allow these different parts of the register to be updated separately. However, there is also a layout problem.

To see the problem, suppose you perform an 8-bit ALU operation on the AH register, which is bits 15-8 of the EAX register. These bits must be shifted down to positions 7-0 so they can take part in the ALU operation, and then must be shifted back to positions 15-8 when stored into AH. On the other hand, if you perform an ALU operation on AL (bits 7-0 of EAX), the bits are already in position and don't need to be shifted.

To support the shifting required for 8-bit register operations, the 386's register file physically interleaves the bits of the two lower bytes (but not the high bytes). As a result, bit 0 of AL is next to bit 0 of AH in the register file, and so forth. This allows multiplexers to easily select bits from AH or AL as needed. In other words, each bit of AH and AL is in almost the correct physical position, so an 8-bit shift is not required. (If the bits were in order, each multiplexer would need to be connected to bits that are separated by eight positions, requiring inconvenient wiring.)8

The shuffle network above the register file interleaves the bottom 16 bits.

The shuffle network above the register file interleaves the bottom 16 bits.

The photo above shows the shuffle network. Each bit has three bus lines associated with it: two for reads and one for writes, and these all get shuffled. On the left, the lines for the 16 bits pass straight through. On the right, though, the two bytes are interleaved. This shuffle network is located below the ALU and above the register file, so data words are shuffled when stored in the register file and then unshuffled when read from the register file.9

In the photo, the lines on the left aren't quite straight. The reason is that the circuitry above is narrower than the circuitry below. For the most part, each functional block in the datapath is constructed with the same width (60 µm) for each bit. This makes the layout simpler since functional blocks can be stacked on top of each other and the vertical bus wiring can pass straight through. However, the circuitry above the registers (for the barrel shifter) is about 10% narrower (54.5 µm), so the wiring needs to squeeze in and then expand back out.10 There's a tradeoff of requiring more space for this wiring versus the space saved by making the barrel shifter narrower and Intel must have considered the tradeoff worthwhile. (My hypothesis is that since the shuffle network required additional wiring to shuffle the bits, it didn't take up more space to squeeze the wiring together at the same time.)

Conclusions

If you look in a book on processor design, you'll find a description of how registers can be created from static memory cells. However, the 386 illustrates that the implementation in a real processor is considerably more complicated. Instead of using one circuit, Intel used six different circuits for the registers in the 386.

The 386's register circuitry also shows the curse of backward compatibility. The x86 architecture supports 8-bit register accesses for compatibility with processors dating back to 1971. This compatibility requires additional circuitry such as the shuffle network and interleaved registers. Looking at the circuitry of x86 processors makes me appreciate some of the advantages of RISC processors, which avoid much of the ad hoc circuitry of x86 processors.

If you want more information about how the 386's memory cells were implemented, I wrote a lower-level article earlier. I plan to write more about the 386, so follow me on Bluesky (@righto.com) or RSS for updates.

Footnotes and references

  1. The 386 has multiple registers that are only relevant to operating systems programmers (see Chapter 4 of the 386 Programmer's Reference Manual). These include the Global Descriptor Table Register (GDTR), Local Descriptor Table Register (LDTR), Interrupt Descriptor Table Register (IDTR), and Task Register (TR). There are four Control Registers CR0-CR3; CR0 controls coprocessor usage, paging, and a few other things. The six Debug Registers for hardware breakpoints are named DR0-DR3, DR6, and DR7. The two Test Registers for TLB testing are named TR6 and TR7. I expect that these registers are in the 386's Segment Unit and Paging Unit, rather than part of the processing datapath. 

  2. Typically the write driver circuit generates a strong low on one of the bitlines, flipping the corresponding inverter to a high output. As soon as one inverter flips, it will force the other inverter into the right state. To support this, the pullup transistors in the inverters are weaker than normal. 

  3. The pass transistor passes its signal through or blocks it. In CMOS, this is usually implemented with a transmission gate with an NMOS and a PMOS transistor in parallel. The cell uses only the NMOS transistor, which is much worse at passing a high signal than a low signal. Because there is one NMOS pass transistor on each side of the inverters, one of the transistors will be passing a low signal that will flip the state. 

  4. The bitline is typically precharged to a high level for a read, and then the cell pulls the line low for a 0. This is more compact than including circuitry in each cell to pull the line high. 

  5. Note that buffering is needed so the (b) cell can write to the (a) cell. If the cells were connected directly, cell (a) could overwrite cell (b) as easily as cell (b) could overwrite cell (a). With the inverters in between, cell (b) won't be affected by cell (a). 

  6. In the 8086, the processor status flags are not stored as a physical register, but instead consist of flip-flops scattered throughout the chip (details). The 386 probably has a similar implementation for the flags.

    In the 8086, the program counter (instruction pointer) does not exist as such. Instead, the instruction prefetch circuitry has a register holding the current prefetch address. If the program counter address is required (to push a return address or to perform a relative branch, for instance), the program counter value is derived from the prefetch address. If the 386 is similar, the program counter won't have a physical register in the register file. 

  7. The x86 architecture combines two 8-bit registers to form a 16-bit register for historical reasons. The TTL-based Datapoint 2200 (1971) system had 8-bit A, B, C, D, E, H, and L registers, with the H and L registers combined to form a 16-bit indexing register for memory accesses. Intel created a microprocessor version of the Datapoint 2200's architecture, called the 8008. Intel's 8080 processor extended the register pairs so BC and DE could also be used as 16-bit registers. The 8086 kept this register design, but changed the 16-bit register names to AX, BX, CX, and DX, with the 8-bit parts called AH, AL, and so forth. Thus, the unusual physical structure of the 386's register file is due to compatibility with a programmable terminal from 1971. 

  8. To support 8-bit and 16-bit operations, the 8086 processor used a similar interleaving scheme with the two 8-bit halves of a register interleaved. Since the 8086 was a 16-bit processor, though, its interleaving was simpler than the 32-bit 386. Specifically, the 8086 didn't have the upper 16 bits to deal with. 

  9. The 386's constant ROM is located below the shuffle network. Thus, constants are stored with the bits interleaved in order to produce the right results. (This made the ROM contents incomprehensible until I figured out the shuffling pattern, but that's a topic for another article.) 

  10. The main body of the datapath (ALU, etc.) has the same 60 µm cell width as the register file. However, the datapath is slightly wider than the register file overall. The reason? The datapath has a small amount of circuitry between bits 7 and 8 and between bits 15 and 16, in order to handle 8-bit and 16-bit operations. As a result, the logical structure of the registers is visible as stripes in the physical layout of the ALU below. (These stripes are also visible in the die photo at the beginning of this article.)

    Part of the ALU circuitry, displayed underneath the structure of the EAX register.

    Part of the ALU circuitry, displayed underneath the structure of the EAX register.

     

Reverse engineering standard cell logic in the Intel 386 processor

The 386 processor (1985) was Intel's most complex processor at the time, with 285,000 transistors. Intel had scheduled 50 person-years to design the processor, but it was falling behind schedule. The design team decided to automate chunks of the layout, developing "automatic place and route" software.1 This was a risky decision since if the software couldn't create a dense enough layout, the chip couldn't be manufactured. But in the end, the 386 finished ahead of schedule, an almost unheard-of accomplishment.

In this article, I take a close look at the "standard cells" used in the 386, the logic blocks that were arranged and wired by software. Reverse-engineering these circuits shows how standard cells implement logic gates, latches, and other components with CMOS transistors. Modern integrated circuits still use standard cells, much smaller now, of course, but built from the same principles.

The photo below shows the 386 die with the automatic-place-and-route regions highlighted in red. These blocks of unstructured logic have cells arranged in rows, giving them a characteristic striped appearance. In comparison, functional blocks such as the datapath on the left and the microcode ROM in the lower right were designed manually to optimize density and performance, giving them a more solid appearance. As for other features on the chip, the black circles around the border are bond wire connections that go to the chip's external pins. The chip has two metal layers, a small number by modern standards, but a jump from the single metal layer of earlier processors such as the 286. The metal appears white in larger areas, but purplish where circuitry underneath roughens its surface. For the most part, the underlying silicon and the polysilicon wiring on top are obscured by the metal layers.

Die photo of the 386 processor with standard-cell logic highlighted in red.

Die photo of the 386 processor with standard-cell logic highlighted in red.

Early processors in the 1970s were usually designed by manually laying out every transistor individually, fitting transistors together like puzzle pieces to optimize their layout. While this was tedious, it resulted in a highly dense layout. Federico Faggin, designer of the popular Z80 processor, describes finding that the last few transistors wouldn't fit, so he had to erase three weeks of work and start over. The closeup of the resulting Z80 layout below shows that each transistor has a different, complex shape, optimized to pack the transistors as tightly as possible.2

A closeup of transistors in the Zilog Z80 processor (1976). This chip is NMOS, not CMOS, which provides more layout flexibility. The metal and polysilicon layers have been removed to expose the underlying silicon. The lighter stripes over active silicon indicate where the polysilicon gates were. I think this photo is from the Visual 6502 project but I'm not sure.

A closeup of transistors in the Zilog Z80 processor (1976). This chip is NMOS, not CMOS, which provides more layout flexibility. The metal and polysilicon layers have been removed to expose the underlying silicon. The lighter stripes over active silicon indicate where the polysilicon gates were. I think this photo is from the Visual 6502 project but I'm not sure.

Standard-cell logic is an alternative that is much easier than manual layout.3 The idea is to create a standard library of blocks (cells) to implement each type of gate, flip-flop, and other low-level component. To use a particular circuit, instead of arranging each transistor, you use the standard design. Each cell has a fixed height but the width varies as needed, so the standard cells can be arranged in rows. For example, the die photo below three cells in a row: a latch, a high-current inverter, and a second latch. This region has 24 transistors in total with PMOS above and NMOS below. Compare the orderly arrangement of these transistors with the Z80 transistors above.

Some standard cell circuitry in the 386. I removed the metal and polysilicon to show the underlying silicon. The irregular blotches are oxide that wasn't fully removed, and can be ignored.

Some standard cell circuitry in the 386. I removed the metal and polysilicon to show the underlying silicon. The irregular blotches are oxide that wasn't fully removed, and can be ignored.

The space between rows is used as a "wiring channel" that holds the wiring between the cells. The photo below zooms out to show four rows of standard cells (the dark bands) and the wiring in between. The 386 uses three layers for this wiring: polysilicon and the upper metal layer (M2) for vertical segments and the lower metal layer (M1) for horizontal segments.

Some standard-cell logic in the 386 processor.

Some standard-cell logic in the 386 processor.

To summarize, with standard cell logic, the cells are obtained from the standard cell library as needed, defining the transistor layout and the wiring inside the cell. However, the locations of each cell (placing) need to be determined, as well as how to arrange the wiring (routing). As will be seen, placing and routing the cells can be done manually or automatically.

Use of standard cells in the 386

Fairly late in the design process, the 386 team decided to use automatic place and route for parts of the chip. By using automatic place and route, 2,254 gates (consisting of over 10,000 devices) were placed and routed in seven weeks. (These numbers are from a paper "Automatic Place and Route Used on the 80386", co-written by Pat Gelsinger, now the CEO of Intel. I refer to this paper multiple times, so I'll call it APR386 for convenience.4) Automatic place and route was not only faster, but it avoided the errors that crept in when layout was performed manually.5

The "place" part of automatic place and route consists of determining the arrangement of the standard cells into rows to minimize the distance between connected cells. Running long wires between cells wastes space on the die, since you end up with a lot of unnecessary metal wiring. But more importantly, long paths have higher resistance, slowing down the signals. Placement is a difficult optimization problem that is NP-complete. Moreover, the task was made more complicated by weighting paths by importance and electrical characteristics, classifying signals as "normal", "fast", or "critical". Paths were also weighted to encourage the use of the thicker M2 metal layer rather than the lower M1 layer.

The 386 team solved the placement problem with a program called Timberwolf, developed by a Berkeley grad student. As one member of the 386 team said, "If management had known that we were using a tool by some grad student as a key part of the methodology, they would never have let us use it." Timberwolf used a simulated annealing algorithm, based on a simulated temperature that decreased over time. The idea is to randomly move cells around, trying to find better positions, but gradually tighten up the moves as the "temperature" drops. At the end, the result is close to optimal. The purpose of the temperature is to avoid getting stuck in a local minimum by allowing "bad" changes at the beginning, but then tightening up the changes as the algorithm progresses.

Once the cells were placed in their positions, the second step was "routing", generating the layout of all the wiring. A suitable commercial router was not available in 1984, so Intel developed its own. As routing is a difficult problem (also NP-complete), they took an iterative heuristic approach, repeatedly routing until they found the smallest channel height that would work. (Thus, the wiring channels are different sizes as needed.) Then they checked the R-C timing of all the signals to find any signals that were too slow. Designers could boost the size of the associated drivers (using the variety of available standard cells) and try the routing again.

Brief CMOS overview

The 386 was the first processor in Intel's x86 line to be built with a technology called CMOS instead of using NMOS. Modern processors are all built from CMOS because CMOS uses much less power than NMOS. CMOS is more complicated to construct, though, because it uses two types of transistors—NMOS and PMOS—so early processors were typically NMOS. But by the mid-1980s, the advantages of switching to CMOS were compelling.

The diagram below shows how an NMOS transistor is constructed. The transistor can be considered a switch between the source and drain, controlled by the gate. The source and drain regions (green) consist of silicon doped with impurities to change its semiconductor properties, forming N+ silicon. The gate consists of a layer of polysilicon (red), separated from the silicon by a very thin insulating oxide layer. Whenever polysilicon crosses active silicon, a transistor is formed. A PMOS transistor has similar construction except it swaps the N-type and P-type silicon, consisting of P+ regions in a substrate of N silicon.

Diagram showing the structure of an NMOS transistor.

Diagram showing the structure of an NMOS transistor.

The NMOS and PMOS transistors are opposite in their construction and operation. An NMOS transistor turns on when the gate is high, while a PMOS transistor turns on when the gate is low. An NMOS transistor is best at pulling its output low, while a PMOS transistor is best at pulling its output high. In a CMOS circuit, the transistors work as a team, pulling the output high or low as needed; this is the "Complementary" in CMOS. (The behavior of MOS transistors is complicated, so this description is simplified, just enough to understand digital circuits.)

One complication is that NMOS transistors are built on P-type silicon, while PMOS transistors are built on N-type silicon. Since the silicon die itself is N silicon, the NMOS transistors need to be surrounded by a tub or well of P silicon.6 The cross-section diagram below shows how the NMOS transistor on the left is embedded in a well of P-type silicon.

Simplified structure of the CMOS circuits.

Simplified structure of the CMOS circuits.

For proper operation, the silicon that surrounds transistors needs to be connected to the appropriate voltage through "tap" contacts.7 For PMOS transistors, the substrate is connected to power through the taps, while for NMOS transistors the well region is connected to ground through the taps. The chip needs to have enough taps to keep the voltage from fluctuating too much; each standard cell typically has a positive tap and a ground tap.

The actual structure of the integrated circuit is much more three-dimensional than the diagram above, due to the thickness of the various layers. The diagram below is a more accurate cross-section. The 386 has two layers of metal: the lower metal layer (M1) in blue and the upper metal layer (M2) in purple. Polysilicon is colored red, while the insulating oxide layers are gray.

Cross-section of CHMOS III transistors. From A double layer metal CHMOS III technology, image colorized by me.

Cross-section of CHMOS III transistors. From A double layer metal CHMOS III technology, image colorized by me.

This complicated three-dimensional structure makes it harder to interpret the microscope images. Moreover, the two metal layers obscure the circuitry underneath. I have removed various layers with acids for die photos, but even so, the images are harder to interpret than those of simpler chips. If the die photos look confusing, don't be surprised.

A logic gate in CMOS is constructed from NMOS and PMOS transistors working together. The schematic below shows a NAND gate with two PMOS transistors in parallel above and two NMOS transistors in series below. If both inputs are high, the two NMOS transistors turn on, pulling the output low. If either input is low, a PMOS transistor turns on, pulling the output high. (Recall that NMOS and PMOS are opposites: a high voltage turns an NMOS transistor on while a low voltage turns a PMOS transistor on.) Thus, the CMOS circuit below produces the desired output for the NAND function.

A CMOS NAND gate.

A CMOS NAND gate.

The diagram below shows how this NAND gate is implemented in the 386 as a standard cell.9 A lot is going on in this cell, but it boils down to four transistors, as in the schematic above. The yellow region is the P-type silicon that forms the two PMOS transistors; the transistor gates are where the polysilicon (red) crosses the yellow region.8 (The middle yellow region is the drain for both transistors; there is no discrete boundary between the transistors.) Likewise, the two NMOS transistors are at the bottom, where the polysilicon (red) crosses the active silicon (green). The blue lines indicate the metal wiring for the cell. I thinned these lines to make the diagram clearer; in the actual cell, the metal lines are as thick as they can be without touching, so they cover most of the cell. The black circles are contacts, connections between the metal and the silicon or polysilicon. Finally, the well taps are the opposite type of silicon, connected to the underlying silicon well or substrate to keep it at the proper voltage.

A standard cell for NAND in the 386.

A standard cell for NAND in the 386.

Wiring to a cell's inputs and output takes place at the top or bottom of the cell, with wiring in the channels between rows of cells. The polysilicon input and output lines are thickened at the top and bottom of the cell to allow connections to the cell. The wiring between cells can be done with either polysilicon or metal. Typically the upper metal layer (M2) is used for vertical wiring, while the lower metal layer (M1) is used for horizontal runs. Since each standard cell only uses M1, vertical wiring (M2) can pass over cells. Moreover, a cell's output can also use a vertical metal wire (M2) rather than the polysilicon shown. The point is that there is a lot of flexibility in how the system can route wires between the cells. The power and ground wires (M1) are horizontal so they can run from cell to cell and a whole row can be powered from the ends.

The photo below shows this NAND cell with the metal layers removed by acid, leaving the silicon and the polysilicon. You can match the features in the photo with the diagram above. The polysilicon appears green due to thin-film effects. At the bottom, two polysilicon lines are connected to the inputs.

Die photo of the NAND standard cell with the metal layers removed. The image isn't as clear as I would like, but it was very difficult to remove the metal without destroying the polysilicon.

Die photo of the NAND standard cell with the metal layers removed. The image isn't as clear as I would like, but it was very difficult to remove the metal without destroying the polysilicon.

The photo below shows how the cell appears in the original die. The two metal layers are visible, but they hide the polysilicon and silicon underneath. The vertical metal stripes are the upper (M2) wiring while the lower metal wiring (M1) makes up the standard cell. It is hard to distinguish the two metal layers, which makes interpretation of the images difficult. Note that the metal wiring is wide, almost completely covering the cell, with small gaps between wires. The contacts are visible as dark circles. Is hard to recognize the standard cells from the bare die, as the contact pattern is the only distinguishing feature.

Die photo of the NAND standard cell showing the metal layer.

Die photo of the NAND standard cell showing the metal layer.

One of the interesting features of the 386's standard cell library is that each type of logic gate is available in multiple drive strengths. That is, cells are available with small transistors, large transistors, or multiple transistors in parallel. Because the wiring and the transistor gates have capacitance, a delay occurs when changing state. Bigger transistors produce more current, so they can switch the values on a wire faster. But there are two disadvantages to bigger transistors. First, they take up more space on the die. But more importantly, bigger transistors have bigger gates with more capacitance, so their inputs take longer to switch. (In other words, increasing the transistor size speeds up the output but slows the input, so overall performance could end up worse.) Thus, the sizes of transistors need to be carefully balanced to achieve optimum performance.10 With a variety of sizes in the standard cell library, designers can make the best choices.

The image below shows a small NAND gate. The design is the same as the one described earlier, but the transistors are much smaller. (Note that there is one row of metal contacts instead of two or three.) The transistor gates are about half as wide (measured vertically) so the NAND gate will produce about half the output current.11

Die photo of a small NAND standard cell with the metal removed.

Die photo of a small NAND standard cell with the metal removed.

Since the standard cells are all the same height, the maximum size of a transistor is limited. To provide a larger drive strength, multiple transistors can be used in parallel. The NAND gate below uses 8 transistors, four PMOS and four NMOS, providing twice as much current.

A large NAND gate as it appears on the die, with the metal removed. The left side is slightly obscured by some remaining oxide.

A large NAND gate as it appears on the die, with the metal removed. The left side is slightly obscured by some remaining oxide.

The diagram below shows the structure of the large NAND gate, essentially two NAND gates in parallel. Note that input 1 must be provided separately to both halves by the routing outside the cell. Input 2, on the other hand, only needs to be supplied to the cell once, since it is wired to both halves inside the cell.

A diagram showing the structure of the large NAND gate.

A diagram showing the structure of the large NAND gate.

Inverters are also available in a variety of drive strengths, from very small to very large, as shown below. The inverter on the left uses the smallest transistors, while the inverter on the right not only uses large transistors but is constructed from six inverters in parallel. One polysilicon input controls all the transistors.

A small inverter and a large inverter.

A small inverter and a large inverter.

A more complex standard cell is XOR. The diagram below shows an XOR cell with large drive current. (There are smaller XOR cells). As with the large NAND gate, the PMOS transistors are doubled up for more current. The multiple input connections are handled by the routing outside the cell. Since the NMOS transistors don't need to be doubled up, there is a lot of unused space in the lower part of the cell. The extra space is used for a very large tap contact, consisting of 24 contacts to ground the well.

The structure of an XOR cell with large drive current.

The structure of an XOR cell with large drive current.

XOR is a difficult gate to build with CMOS. The cell above implements it by combining a NOR gate and an AND-NOR gate, as shown below. You can verify that if both inputs are 0 or both inputs are 1, the output is forced low as desired. In the layout above, the NOR gate is on the left, while the AND-NOR gate has the AND part on the right. A metal wire down the center connects the NOR output to the AND-NOR input. The need for two sub-gates is another reason why the XOR cell is so large.

Schematic of the XOR cell.

Schematic of the XOR cell.

I'll describe one more cell, the latch, which holds one bit and is controlled by a clock signal. Latches are heavily used in the 386 whenever a signal needs to be remembered or a circuit needs to be synchronous. The 386 has multiple types of standard cell latches including latches with set or reset controls and latches with different drive strengths. Moreover, two latches can be combined to form an edge-triggered flip-flop standard cell.

The schematic below shows the basic latch circuit, the most common type in the 386. On the right, two inverters form a loop. This loop can stably hold a 0 or 1 value. On the left, a PMOS transistor and an NMOS transistor form a transmission gate. If the clock is high, both transistors will turn on and pass the input through. If the clock is low, both transistors will turn off and block the input. The trick to the latch is that one inverter is weak, producing just a small current. The consequence is that the input can overpower the inverter output, causing the inverter loop to switch to the input value. The result is that when the clock is high, the latch will pass the input value through to the output. But when the clock is low, the latch will hold its previous value. (The output is inverted with respect to the input, which is slightly inconvenient but reduces the size of the latch.)

Schematic of a latch.

Schematic of a latch.

The standard cell layout of the latch (below) is complicated, but it corresponds to the schematic. At the left are the PMOS and NMOS transistors that form the transmission gate. In the center is the weak inverter, with its output to the left. The weak transistors are in the middle; they are overlapped by a thick polysilicon region, creating a long gate that produces a low current.12 At the right is the inverter that drives the output. The layout of this circuit is clever, designed to make the latch as compact as possible. For example, the two inverters share power and ground connections. Notice how the two clock lines pass from top to bottom through gaps in the active silicon so each line only forms one transistor. Finally, the metal line in the center connects the transmission gate outputs and the weak inverter output to the other inverter's input, but asymmetrically at the top so the two inverters don't collide.

The standard cell layout of a latch.

The standard cell layout of a latch.

To summarize, I examined many (but not all) of the standard cells in the 386 and found about 70 different types of cells. These included the typical logic gates with various drive strengths: inverters, buffers, XOR, XNOR, AND-NOR, and 3- and 4-input logic gates. There are also transmission gates including ones that default high or low, as well as multiplexers built from transmission gates. I found a few cells that were surprising such as dual inverters and a combination 3-input and 2-input NAND gate. I suspect these consist of two standard cells that were merged together, since they seem too specialized to be part of a standard cell library.

The APR386 paper showed six of the standard cells in the 386 with the diagram below. The small and large inverters are the same as the ones described above, as is the NAND gate NA2B. The latch is similar to the one described above, but with larger transistors. The APR386 paper also showed a block of standard cells, which I was able to locate in the 386.13

Examples of standard cells, from APR386. The numbers are not defined but may indicate input and output capacitance. (Click for a larger version.)

Examples of standard cells, from APR386. The numbers are not defined but may indicate input and output capacitance. (Click for a larger version.)

Intel's standard cell line

Intel productized its standard cells around 1986 as a 1.5 µm library using Intel's CMOS technology (called CHMOS III).14 Although the library had over 100 cell types, it was very limited compared to the cells used inside the 386. The library included logic gates, flip-flops, and latches as well as scalable registers, counters, and adders. Most gates only came in one drive strength. Even inverters only came in "normal" and "high" drive strength. I assume these cells are the same as the ones used in the 386, but I don't have proof. The library also included larger devices such as a cell-compatible 80C51 microcontroller and PC peripheral chips such as the 8259 programmable interrupt controller and the 8254 programmable interval timer. I think these were re-implemented using standard cells.

Intel later produced a 1.0 µm library using CHMOS IV, for use "both by ASIC customers and Intel's internal chip designers." This library had a larger collection of drive strengths. The 1.0 µm library included the 80C186 and associated peripheral chips.

Layout techniques in the 386

In this section, I'll look at the active silicon regions, making the cells themselves more visible. In the photos below, I dissolved the metal and polysilicon, leaving the active silicon. (Ignore the irregular greenish shapes; these are oxide that wasn't fully removed.)

The photo below shows the silicon for three rows of standard cells using automatic place and route. You can see the wide variety of standard cell widths, but the height of the cells is constant. The transistor gates are visible as the darker vertical stripes across the silicon. You may be able to spot the latch in each row, distinguished by the long, narrow transistors of the weak inverters.

Three rows of standard cells that were automatically placed and routed.

Three rows of standard cells that were automatically placed and routed.

In the first row, the larger PMOS transistors are on top, while the smaller NMOS transistors are below. This pattern alternates from row to row, so the second row has the NMOS transistors on top and the third row has the PMOS transistors on top. The height of the wiring channel between the cells is variable, made as small as possible while fitting the wiring.

The 386 also contains regions of standard cells that were apparently manually placed and routed, as shown in the photo below. Using standard cells avoids the effort of laying out each transistor, so it is still easier than a fully custom layout. These cells are in rows, but the rows are now double rows with channels in between. The density is higher, but routing the wires becomes more challenging.

Three rows of standard cells that were manually placed and routed.

Three rows of standard cells that were manually placed and routed.

For critical circuitry such as the datapath, the layout of each transistor was optimized. The register file, for example, has a very dense layout as shown below. As you can see, the density is much higher than in the previous photos. (The three photos are at the same scale.) Transistors are packed together with very little wasted space. This makes the layout difficult since there is little room for wiring. For this particular circuit, the lower metal layer (M1) runs vertically with signals for each bit while the upper metal layer (M2) runs horizontally for power, ground, and control signals.15

Three rows of standard cells that were manually placed and routed.

Three rows of standard cells that were manually placed and routed.

The point of this is that the 386 uses a variety of different design techniques, from dense manual layout to much faster automated layout. Different techniques were used for different parts of the chip, based on how important it was to optimize. For example, circuits in the datapath were typically repeated 32 times, once for each bit, so manual effort was worthwhile. The most critical functional blocks were the microcode ROM (CROM), large PLAs, ALU, TLB (translation lookaside buffer), and the barrel shifter.16

Conclusions

Standard cell logic and automatic place and route have a long history before the 386, back to the early 1970s, so this isn't an Intel invention.17 Nonetheless, the 386 team deserves the credit for deciding to use this technology at a time when it was a risky decision. They needed to develop custom software for their placing and routing needs, so this wasn't a trivial undertaking. This choice paid off and they completed the 386 ahead of schedule. The 386 ended up being a huge success for Intel, moving the x86 architecture to 32-bits and defining the dominant computer architecture for the rest of the 20th century.

If you're interested in standard cell logic, I wrote about standard cell logic in an IBM chip. I plan to write more about the 386, so follow me on Twitter @kenshirriff or RSS for updates. I'm also on Mastodon occasionally as @[email protected]. Thanks to Pat Gelsinger and Roxanne Koester for providing helpful papers.

Notes and references

  1. The decision to use automatic place and route is described on page 13 of the Intel 386 Microprocessor Design and Development Oral History Panel, a very interesting document on the 386 with discussion from some of the people involved in its development. 

  2. Circuits that had a high degree of regularity, such as the arithmetic/logic unit (ALU) or register storage were typically constructed by manually laying out a block to implement a bit and then repeating the block as needed. Because a circuit was repeated 32 times for the 32-bit processor, the additional effort was worthwhile. 

  3. An alternative layout technique is the gate array, which doesn't provide as much flexibility as a standard cell approach. In a gate array (sometimes called a master slice), the chip had a fixed array of transistors (and often resistors). The chip could be customized for a particular application by designing the metal layer to connect the transistors as needed. The density of the chip was usually poor, but gate arrays were much faster to design, so they were advantageous for applications that didn't need high density or produced a relatively small volume of chips. Moreover, manufacturing was much faster because the silicon wafers could be constructed in advance with the transistor array and warehoused. Putting the metal layer on top for a particular application could then be quick. Similar gate arrays used a fixed arrangement of logic gates or flip-flops, rather than transistors. Gate arrays date back to 1967

  4. The full citation for the APR386 paper is "Automatic Place and Route Used on the 80386" by Joseph Krauskopf and Pat Gelsinger, Intel Technology Journal, Spring 1986. I was unable to find it online. 

  5. Once the automatic place and route process had finished, the mask designers performed some cleanup along with compaction to squeeze out wasted space, but this was a relatively minor amount of work.

    While manual optimization has benefits, it can also be overdone. When the manufacturing process improved, the 80386 moved from a 1.5 µm process to a 1 µm process. The layout engineers took advantage of this switch to optimize the standard cell circuitry, manually squeezing out some extra space. Unfortunately, optimizing one block of a die doesn't necessarily make the die smaller, since the size is constrained by the largest blocks. The result is that the optimized 80386 has blocks of empty space at the bottom (visible as black rectangles) and the standard-cell optimization didn't provide any overall benefit. (As the Pentium Pro chief architect Robert Colwell explains, "Removing the state of Kansas does not make the perimeter of the United States any smaller.")

    Comparison of the 1.5 µm die and the 1 µm die at the same scale. Photos courtesy of Antoine Bercovici.

    Comparison of the 1.5 µm die and the 1 µm die at the same scale. Photos courtesy of Antoine Bercovici.

    At least compaction went better for the 386 than for the Pentium. Intel performed a compaction on the Pentium shortly before release, attempting to reduce the die size. The engineers shrunk the floating point divider, removing some lookup table cases that they proved were unnecessary. Unfortunately, the proof was wrong, resulting in floating point errors in a few cases. This caused the infamous Pentium FDIV bug, a problem that became highly visible to the general public. Replacing the flawed processors cost Intel 475 million dollars. And it turned out that shrinking the floating point divider had no effect on the overall die size.

    Coincidentally, early models of the 386 had an integer multiplication bug, but Intel fixed this with little cost or criticism. The 386 bug was an analog issue that only showed up unpredictably with a combination of argument values, temperature, and manufacturing conditions. 

  6. This chip is built on a substrate of N-type silicon, with wells of P-type silicon for the NMOS transistors. Chips can be built the other way around, starting with P-type silicon and putting wells of N-type silicon for the PMOS transistors. Another approach is the "twin-well" CMOS process, constructing wells for both NMOS and PMOS transistors. 

  7. The bulk silicon voltage makes the boundary between a transistor and the bulk silicon act as a reverse-biased diode, so current can't flow across the boundary. Specifically, for a PMOS transistor, the N-silicon substrate is connected to the positive supply. For an NMOS transistor, the P-silicon well is connected to ground. A P-N junction acts as a diode, with current flowing from P to N. But the substrate voltages put P at ground and N at +5, blocking any current flow. The result is that the bulk silicon can be considered an insulator, with current restricted to the N+ and P+ doped regions. If this back bias gets reversed, for example, due to power supply fluctuations, current can flow through the substrate. This can result in "latch-up", a situation where the N and P regions act as parasitic NPN and PNP transistors that latch into the "on" state. This shorts power and ground and can destroy the chip. The point is that the substrate voltages are very important for the proper operation of the chip. 

  8. I'm using the standard CMOS coloring scheme for my diagrams. I'm told that Intel uses a different color scheme internally. 

  9. The schematic below shows the physical arrangement of the transistors for the NAND gate, in case it is unclear how to get from the layout to the logic gate circuit. The power and ground lines are horizontal so power can pass from cell to cell when the cells are connected in rows. The gate's inputs and outputs are at the top and bottom of the cell, where they can be connected through the wiring channels. Even though the transistors are arranged horizontally, the PMOS transistors (top) are in parallel, while the NMOS transistors (bottom) are in series.

    Schematic of the NAND gate as it is arranged in the standard cell.

    Schematic of the NAND gate as it is arranged in the standard cell.

     

  10. The 1999 book Logical Effort describes a methodology for maximizing the performance of CMOS circuits by correctly sizing the transistors. 

  11. Unfortunately, the word "gate" is used for both transistor gates and logic gates, which can be confusing. 

  12. You might expect that these transistors would produce more current since they are larger than the regular transistors. The reason is that a transistor's current output is proportional to the gate width divided by the length. Thus, if you make the transistor bigger in the width direction, the current increases, but if you make the transistor bigger in the length direction, the current decreases. You can think of increasing width as acting as multiple transistors in parallel. Increasing length, on the other hand, makes a longer path for current to get from the source to the drain, weakening it. 

  13. The APR386 paper discusses the standard-cell layout in detail. It includes a plot of a block of standard-cell circuitry (below).

    A block of standard-cell circuitry from APR386.

    A block of standard-cell circuitry from APR386.

    After carefully studying the 386 die, I was able to find the location of this block of circuitry (below). The two regions match exactly; they look a bit different because the M1 metal layer (horizontal) doesn't show up in the plot above.

    The same block of standard cells on the 386 die.

    The same block of standard cells on the 386 die.

     

  14. Intel's CHMOS III standard cells are documented in Introduction to Intel Cell-Based Design (1988). The CHMOS IV library is discussed in Design Methodology for a 1.0µ Cell-based Library Efficiently Optimized for Speed and Area. The paper Validating an ASIC Standard Cell Library covers both libraries. 

  15. For details on the 386's register file, see my earlier article

  16. Source: "High Performance Technology Circuits and Packaging for the 80386", Jan Prak, Proceedings, ICCD Conference, Oct. 1986. 

  17. I'll provide more history on standard cells in this footnote. RCA patented a bipolar standard cell in 1971, but this was a fixed arrangement of transistors and resistors, more of a gate array than a modern standard cell. Bell Labs researched standard cell layout techniques in the early 1970s, calling them Polycells, including a 1973 paper by Brian Kernighan. By 1979 A Guide to LSI Implementation discussed the standard cell approach and it was described as well-known in this patent application. Even so, Electronics called these design methods "futuristic" in 1980.

    Standard cells became popular in the mid-1980s as faster computers and improved design software made it practical to produce semi-custom designs that used standard cells. Standard cells made it to the cover of Digital Design in August 1985, and the article inside described numerous vendors and products. Companies like Zymos and VLSI Technology (VTI) focused on standard cells. Traditional companies such as Texas Instruments, NCR, GE/RCA, Fairchild, Harris, ITT, and Thomson introduced lines of standard cell products in the mid-1980s.  

Two interesting XOR circuits inside the Intel 386 processor

Intel's 386 processor (1985) was an important advance in the x86 architecture, not only moving to a 32-bit processor but also switching to a CMOS implementation. I've been reverse-engineering parts of the 386 chip and came across two interesting and completely different circuits that the 386 uses to implement an XOR gate: one uses standard-cell logic while the other uses pass-transistor logic. In this article, I take a look at those circuits.

The die of the 386. Click this image (or any other) for a larger version.

The die of the 386. Click this image (or any other) for a larger version.

The die photo above shows the two metal layers of the 386 die. The polysilicon and silicon layers underneath are mostly hidden by the metal. The black dots around the edges are the bond wires connecting the die to the external pins. The 386 is a complicated chip with 285,000 transistor sites. I've labeled the main functional blocks. The datapath in the lower left does the actual computations, controlled by the microcode ROM in the lower right.

Despite the complexity of the 386, if you zoom in enough, you can see individual XOR gates. The red rectangle at the top (below) is a shift register for the chip's self-test. Zooming in again shows the silicon for an XOR gate implemented with pass transistors. The purple outlines reveal active silicon regions, while the stripes are transistor gates. The yellow rectangle zooms in on part of the standard-cell logic that controls the prefetch queue. The closeup shows the silicon for an XOR gate implemented with two logic gates. Counting the stripes shows that the first XOR gate is implemented with 8 transistors while the second uses 10 transistors. I'll explain below how these transistors are connected to form the XOR gates.

The die of the 386, zooming in on two XOR gates.

The die of the 386, zooming in on two XOR gates.

A brief introduction to CMOS

CMOS circuits are used in almost all modern processors. These circuits are built from two types of transistors: NMOS and PMOS. These transistors can be viewed as switches between the source and drain controlled by the gate. A high voltage on the gate of an NMOS transistor turns the transistor on, while a low voltage on the gate of a PMOS transistor turns the transistor on. An NMOS transistor is good at pulling the output low, while a PMOS transistor is good at pulling the output high. Thus, NMOS and PMOS transistors are opposites in many ways; they are complementary, which is the "C" in CMOS.

Structure of a MOS transistor. Although the transistor's name represents the Metal-Oxide-Semiconductor layers, modern MOS transistors typically use polysilicon instead of metal for the gate.

Structure of a MOS transistor. Although the transistor's name represents the Metal-Oxide-Semiconductor layers, modern MOS transistors typically use polysilicon instead of metal for the gate.

In a CMOS circuit, the NMOS and PMOS transistors work together, with the NMOS transistors pulling the output low as needed while the PMOS transistors pull the output high. By arranging the transistors in different ways, different logic gates can be created. The diagram below shows a NAND gate constructed from two PMOS transistors (top) and two NMOS transistors (bottom). If both inputs are high, the NMOS transistors turn on and pull the output low. But if either input is low, a PMOS transistor will pull the output high. Thus, the circuit below implements a NAND gate.

A NAND gate implemented in CMOS.

A NAND gate implemented in CMOS.

Notice that NMOS and PMOS transistors have an inherent inversion: a high input produces a low (for NMOS) or a low input produces a high (for PMOS). Thus, it is straightforward to produce logic circuits such as an inverter, NAND gate, NOR gate, or an AND-OR-INVERT gate. However, producing an XOR (exclusive-or) gate doesn't work with this approach: an XOR gate produces a 1 if either input is high, but not both.1 The XNOR (exclusive-NOR) gate, the complement of XOR, also has this problem. As a result, chips often have creative implementations of XOR gates.

The standard-cell two-gate XOR circuit

Parts of the 386 were implemented with standard-cell logic. The idea of standard-cell logic is to build circuitry out of standardized building blocks that can be wired by a computer program. In earlier processors such as the 8086, each transistor was carefully positioned by hand to create a chip layout that was as dense as possible. This was a tedious, error-prone process since the transistors were fit together like puzzle pieces. Standard-cell logic is more like building with LEGO. Each gate is implemented as a standardized block and the blocks are arranged in rows, as shown below. The space between the rows holds the wiring that connects the blocks.

Some rows of standard-cell logic in the 386 processor. This is part of the segment descriptor control circuitry.

Some rows of standard-cell logic in the 386 processor. This is part of the segment descriptor control circuitry.

The advantage of standard-cell logic is that it is much faster to create a design since the process can be automated. The engineer described the circuit in terms of the logic gates and their connections. A computer algorithm placed the blocks so related blocks are near each other. An algorithm then routed the circuit, creating the wiring between the blocks. These "place and route" algorithms are challenging since it is an extremely difficult optimization problem, determining the best locations for the blocks and how to pack the wiring as densely as possible. At the time, the algorithm took a day on a powerful IBM mainframe to compute the layout. Nonetheless, the automated process was much faster than manual layout, cutting weeks off the development time for the 386. The downside is that the automated layout is less dense than manually optimized layout, with a lot more wasted space. (As you can see in the photo above, the density is low in the wiring channels.) For this reason, the 386 used manual layout for circuits where a dense layout was important, such as the datapath.

In the 386, the standard-cell XOR gate is built by combining a NOR gate with an AND-NOR gate as shown below.2 (Although AND-NOR looks complicated, it is implemented as a single gate in CMOS.) You can verify that if both inputs are 0, the NOR gate forces the output low, while if both inputs are 1, the AND gate forces the output low, providing the XOR functionality.

Schematic of an XOR circuit.

Schematic of an XOR circuit.

The photo below shows the layout of this XOR gate as a standard cell. I have removed the metal and polysilicon layers to show the underlying silicon. The outlined regions are the active silicon, with PMOS above and NMOS below. The stripes are the transistor gates, normally covered by polysilicon wires. Notice that neighboring transistors are connected by shared silicon; there is no demarcation between the source of one transistor and the drain of the next.

The silicon implementing the XOR standard cell. This image is rotated 180° from the layout on the die to put PMOS at the top.

The silicon implementing the XOR standard cell. This image is rotated 180° from the layout on the die to put PMOS at the top.

The schematic below corresponds to the silicon above. Transistors a, b, c, and d implement the first NOR gate. Transistors g, h, i, and j implement the AND part of the AND-NOR gate. Transistors e and f implement the NOR input of the AND-NOR gate, fed from the first NOR gate. The standard cell library is designed so all the cells are the same height with a power rail at the top and a ground rail at the bottom. This allows the cells to "snap together" in rows. The wiring inside the cell is implemented in polysilicon and the lower metal layer (M1), while the wiring between cells uses the upper metal layer (M2) for vertical connections and lower metal (M1) for horizontal connections. This strategy allows vertical wires to pass over the cells without interfering with the cell's wiring.

Transistor layout in the XOR standard cell.

Transistor layout in the XOR standard cell.

One important factor in a chip such as the 386 is optimizing the sizes of transistors. If a transistor is too small, it will take too much time to switch its output line, reducing performance. But if a transistor is too large, it will waste power as well as slowing down the circuit that is driving it. Thus, the standard-cell library for the 386 includes several XOR gates of various sizes. The diagram below shows a considerably larger XOR standard cell. The cell is the same height as the previous XOR (as required by the standard cell layout), but it is much wider and the transistors inside the cell are taller. Moreover, the PMOS side uses pairs of transistors to double the current capacity. (NMOS has better performance than PMOS so doesn't require doubling of the transistors.) Thus, there are 10 PMOS transistors and 5 NMOS transistors in this XOR cell.

A large XOR standard cell. This cell is also rotated from the die layout.

A large XOR standard cell. This cell is also rotated from the die layout.

The pass transistor circuit

Some parts of the 386 implement XOR gates completely differently, using pass transistor logic. The idea of pass transistor logic is to use transistors as switches that pass inputs through to the output, rather than using transistors as switches to pull the output high or low. The pass transistor XOR circuit uses 8 transistors, compared with 10 for the previous circuit.3

The die photo below shows a pass-transistor XOR circuit, highlighted in red. Note that the surrounding circuitry is irregular and much more tightly packed than the standard-cell circuitry. This circuit was laid out manually producing an optimized layout compared to standard cells. It has four PMOS transistors at the top and four NMOS transistors at the bottom.

The pass-transistor XOR circuit on the die. The green regions are oxide that was not completely removed causing thin-film interference.

The pass-transistor XOR circuit on the die. The green regions are oxide that was not completely removed causing thin-film interference.

The schematic below shows the heart of the circuit, computing the exclusive-NOR (XNOR) of X and Y with four pass transistors. To understand the circuit, consider the four input cases for X and Y. If X and Y are both 0, PMOS transistor a will turn on (because Y is low), passing 1 to the XNOR output. (X is the complemented value of the X input.) If X and Y are both 1, PMOS transistor b will turn on (because X is low), passing 1. If X and Y are 1 and 0 respectively, NMOS transistor c will turn on (because X is high), passing 0. If X and Y are 0 and 1 respectively, transistor d will turn on (because Y is high), passing 0. Thus, the four transistors implement the XNOR function, with a 1 output if both inputs are the same.

Partial implementation of XNOR with four pass transistors.

Partial implementation of XNOR with four pass transistors.

To make an XOR gate out of this requires two additional inverters. The first inverter produces X from X. The second inverter generates the XOR output by inverting the XNOR output. The output inverter also has the important function of buffering the output since the pass transistor output is weaker than the inputs. Since each inverter takes two transistors, the complete XOR circuit uses 8 transistors. The schematic below shows the full circuit. The i1 transistors implement the input inverter and the i2 transistors implement the output inverter. The layout of this schematic matches the earlier die photo.5

Implementation of XOR with eight pass transistors.

Implementation of XOR with eight pass transistors.

Conclusions

An XOR gate may seem like a trivial circuit, but there is more going on than you might expect. I think it is interesting that there isn't a single solution for implementing XOR; even inside a single chip, multiple approaches can be used. (If you're interested in XOR circuits, I also looked at the XOR circuit in the Z80.) It's also reassuring to see that even for a complex chip such as the 386, the circuitry can be broken down into logic gates and then understood at the transistor level.

I plan to write more about the 386, so follow me on Twitter @kenshirriff or RSS for updates. I'm also on Mastodon occasionally as @[email protected].

Notes and references

  1. You can't create an AND or OR gate directly from CMOS either, but this isn't usually a problem. One approach is to create a NAND (or NOR) gate and then follow it with an inverter, but this requires an "extra" inverter. However, the inverter can often be eliminated by flipping the action of the next gate (using De Morgan's laws). For example, if you have AND gates feeding into an OR gate, you can change the circuit to use NAND gates feeding into a NAND gate, eliminating the inverters. Unfortunately, flipping the logic levels doesn't help with XOR gates, since XNOR is just as hard to produce. 

  2. The 386 also uses XNOR standard-cell gates. These are implemented with the "opposite" circuit from XOR, swapping the AND and OR gates:

    Schematic of an XNOR circuit.

    Schematic of an XNOR circuit.

     

  3. I'm not sure why some circuits in the 386 use standard logic for XOR while other circuits use pass transistor logic. I suspect that the standard XOR is used when the XOR gate is part of a standard-cell logic circuit, while the pass transistor XOR is used in hand-optimized circuits. There may also be performance advantages to one over the other. 

  4. The first inverter can be omitted in the pass transistor XOR circuit if the inverted input happens to be available. In particular, if multiple XOR gates use the same input, one inverter can provide the inverted input to all of them, reducing the per-gate transistor count. 

  5. The pass transistor XOR circuit uses different layouts in different parts of the 386, probably because hand layout allows it to be optimized. For instance, the instruction decoder uses the XOR circuit below. This circuit has four PMOS transistors on the left and four NMOS transistors on the right.

    An XOR circuit from the instruction decoder.

    An XOR circuit from the instruction decoder.

    The schematic shows the wiring of this circuit. Although the circuit is electrically the same as the previous pass-transistor circuit, the layout is different. In the previous circuit, several of the transistors were connected through their silicon, while this circuit has all the transistors separated and arranged in columns.

    Schematic of the XOR circuit from the instruction decoder.

    Schematic of the XOR circuit from the instruction decoder.